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1. EXECUTIVE SUMMARY

A travel demand analysis consists of  assessing four components of the travel pattern for a study
area: i) trip generation (TG) or where trips are coming from; ii) trip distribution (TD) or
where trips are going to; iii) modal split (MS) or the shares among available modes for the flow
between origin-destination (O-D) pairs; and, iv) network assignment (NA) or the route choice
within each mode. The standard “state-of-the-practice” in travel demand modeling is the
sequential or four-step approach.  This modeling strategy estimates the four travel demand
components sequentially and feeds the results from one component to the next component in the
sequence.  Unfortunately, the four-step approach is flawed.  A particularly severe problem
is potential inconsistency among the travel demand component estimates.  Another problem is
that prediction errors from any component are compounded in each subsequent stage,
potentially leading to substantial errors in latter stages.

While the inherent flaws in the four-step approach are recognized widely, an existing,
viable alternative is not widely known.  The equilibrium travel demand modeling approach
embeds the travel demand components in the four-step approach within a market equilibrium
framework.  This generates consistent answers among the four travel demand components.  The
familiar components from the four-stage approach are preserved; the additional theory and
modeling framework simply enforces consistency among these components.  Achieving this
consistency in general does not require substantial increases in computational resources
nor data inputs.

This research report addresses the gap between the state-of-the-art and the state-of-
the-practice in travel demand modeling.  This report is an accessible review of the theory and
practice of equilibrium travel demand modeling.  This review is intended for practitioners and
beginning students in transportation analysis, modeling and planning.  Key features of this review
include:  i) a focus on practical travel demand models, i.e., models that can be implemented at
the urban or regional-scale; ii) a focus on the behavioral assumptions, data requirements,
parameter estimation procedures and solution procedures that are key to model application.; iii)
placement of mathematical formulae are in appendices, allowing the less mathematically-incline
reader to skip the formulae but still receive an intuitive understanding of the models’ structures.
These features should render this review accessible to its intended audience, transportation
analysts and planners.

This report first reviews the theoretical conditions for network flow equilibrium (i.e., the
NA phase of the four-step approach) and the overall market equilibrium for the remaining travel
demand components (MS, TD, TG) based on the assumed network equilibrium.  The available
network equilibrium principles include:

i)  User optimal-strict (UO-S): At network equilibrium, no traveler can
reduce his or her travel costs by unilaterally changing routes (i.e., changing
routes independently without other users’ route changes);
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ii)  User optimal-general (UO-G): Travelers change routes in the next time
period in a manner that reduces total cost based on the current route
costs;

iii)  Dynamic user optimal (DUO): At network equilibrium, no traveler who
departed during the same time interval can reduce his or her travel costs
by unilaterally changing routes;

iv)  Stochastic user optimal (SUO): At network equilibrium, no traveler can
reduce his or her perceived travel costs by unilaterally changing routes.

These network equilibrium principles can be linked in a theoretically consistent manner to
equilibrium conditions for the higher-level travel demands.  Models that do not enforce this
simultaneous equilibrium are misspecified and consequently flawed.  Empirical evidence going as
far back as the 1970’s suggests that the four-step approach suffers from misspecification,
nonconvergence and error.

Combined travel demand models can be derived based on the each assumed network
equilibrium.  The following table summarizes the models reviewed in this report:

Travel demand components

Network
equilibrium class

NA NA/MS NA/MS/TD NA/MS/TD/TG

UO-S Sheffi (1985) Evans (1976) Florian and
Nguyen (1978)

STEM (Safwat and
Magnanti 1988)

UO-G T2 (Dial 1995b) Dafermos (1980) Dafermos (1982)

DUO Janson (1991 a,b)

SUO Fisk (1980) Super- and hyper-networks (Sheffi and Daganzo 1980)

UO-S/SUO Trip consumer approach (Oppenheim 1995)

The equilibrium travel demand models discussed generally follow an equivalent
optimization approach. This strategy first specifies a combined travel demand model then
derives an equivalent optimization problem whose solution corresponds to a market equilibrium
of the specified travel demand components in the initial model.  Typically, this problem contains
a objective function to be minimized and constraints that represent flow and aggregate demand
feasibility requirements.  In the interest of brevity and due to the pragmatic orientation of this
report, this section only discusses the equivalent optimization problems.  The report discusses
the models from the perspective of: i) basic assumptions; ii) model structure; iii) data
requirements and parameter estimation; and iv) solution procedure.

After discussing the basic characteristics of each model, this report compares the travel
demand methods based on several criteria.  The comparison provides guidance for model
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selection and use, although it does not provide a definitive answer. Comparison of the travel
demand models uses the following criteria: i) basic theory or the major strengths and
weaknesses of the model=s theoretical base; ii) mathematical elegance or the parsimony and
flexibility of the model=s formalism; iii) computational requirements and performance,
including the basic procedural needs of each model=s algorithm as well as performance
efficiency; and, iv) data requirements and parameter estimation.

Although this report’s objective is an accessible review of equilibrium travel demand
models rather than the research frontiers, this review nevertheless suggests three major research
and development issues.  This includes: i) specification and development of a computational
toolkit for equilibrium travel demand modeling; ii) development of a travel demand model
testbed; and, iii) development of a combined statistical distribution theory and
simultaneous parameter estimation procedures. The first issue concerns the specification and
development of a toolkit that can support several of the equilibrium travel demand models
within the same computational platform. Instead of forcing a travel demand analysis into the
model available within a given GIS software, this would allow the practitioner to access the
model or models most appropriate for the research question at hand.  The second issue, closely
related to the first, concerns support for extensive testing of equilibrium travel demand models
as well as other competing approaches.

The third research and development issue addresses a weakness of equilibrium travel
demand models, specifically, a lack of statistical distribution theory for the combined travel
demand components within each equilibrium model.  This weakness is shared with the 4-step
approach: a consistent combined statistical distribution theory does not exist for the sequential
travel demand estimation procedure.  However, this weakness is not as apparent in the 4-step
approach since it artificially separates the travel demand modeling components.  When these
components are embedded in an equilibrium framework, this weakness becomes more obvious.
Some discussion of these combined estimation issues does exist in the literature.  However, no
existing model has a combined statistical distribution theory and an efficient and unbiased
simultaneous estimation procedure for all parameters.  Continued research along this line is
required for effective application of equilibrium travel demand models.
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6. INTRODUCTION

A travel demand analysis consists of  assessing four components of the travel pattern for a study
area: i) trip generation (TG) or where trips are coming from; ii) trip distribution (TD) or
where trips are going to; iii) modal split (MS) or the shares among available modes for the flow
between origin-destination (O-D) pairs; and, iv) network assignment (NA) or the route choice
within each mode.  Assessing these components provides insight into the effectiveness of
transportation policy and the performance of transportation infrastructure.  In addition, being
able to predict these components through modeling can allow the planner or policy analyst to
pose “what-if?” scenarios regarding infrastructure, land use and/or policy changes and estimate
the resulting impacts on travel patterns.

The standard “state-of-the-practice” in travel demand modeling is the sequential or
four-step approach.  This modeling strategy estimates the four travel demand components
sequentially and feeds the results from one component to the next component in the sequence.
A common sequence is TG6TD6MS6NA; this approach is embodied in the urban
transportation modeling system (UTMS) strategy and commercial software that implement
this strategy.

Unfortunately, the four-step approach is flawed.  A particularly severe problem is
potential inconsistency among the travel demand component estimates.  Since the four-step
approach does not require internal consistency among the four estimated components, it is not
likely to occur in practice.  For example, the NA phase changes network travel costs which will
no longer be consistent with the travel costs used for the TG, TD and MS phases.  A common
response is to use feedback loops and “cycle-back” answers to previous steps for additional
rounds of estimation.  However, this still does not guarantee convergence to a consistent
answer.  Another problem is that prediction errors from any component are compounded in
each subsequent stage, potentially leading to substantial errors in latter stages (Fernandez and
Friesz 1983; Sheppard 1995).  These theoretical flaws have been substantiated by empirical
evidence.  As far back as the mid-seventies, Florian, Nguyen and Ferland (1975) found
empirical evidence that sequential estimation with feedback of TD-NA does not converge.
More recently, empirical benchmarking by COMSIS (1996) and Boyce, Zhang and Lupa
(1994) found that sequential estimation results in inferior predictions of key output variables
such as traffic flow on links.

The inherent weakness of the four-step approach is recognized widely.  For example,
the U.S. Department of Transportation, in cooperation with the U.S. Environmental Protection
Agency and U.S. Department of Energy, has created the travel model improvement program
(TMIP) to respond to requirements of the 1991 Clean Air Act and the 1991 Intermodal
Surface Transportation Efficiency (ISTEA) Act.  A short-term improvement identified by this
program is improving the feedback loop strategy in the four-step approach.  Long-term
improvements include the development of the “next-generation” of travel demand models, i.e.,
moving beyond the four-step approach.  One initiative from the long-term improvement
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program is TRANSIMS, a cellular automata-based microsimulation travel model (Barrett et al.
1995).

While the inherent flaws in the four-step approach are recognized widely, alternatives to
this approach are not widely known.  Although next-generation modeling initiatives have great
merit, there is little awareness of an existing modeling strategy that directly addresses the major
flaws in the four-step approach.  The modeling strategy is the equilibrium travel demand
modeling approach.  This strategy embeds the travel demand components in the four-step
approach within a market equilibrium framework.  This “simultaneous estimation” approach
generates consistent answers among the four travel demand components.  The familiar
components from the four-stage approach are preserved; the additional theory and modeling
framework simply enforces consistency among these components.  Achieving this consistency
in general does not require substantial increases in computational resources nor data
inputs.  Thus, planners and analyst who are familiar with the four-stage approach can easily
understand the equilibrium approach.

The equilibrium travel demand approach has been present in the literature for over three
decades.  The initial theory was developed in the fifties (Beckmann, McGuire and Winsten
1956; Wardrop 1952).  Practical models have existed since the mid-seventies (Evans 1976;
Florian and Nguyen 1978).  Recently, substantial improvements in this approach have been
achieved; these improvements include: i) encompassing all four travel demand components
(Safwat and Magnanti 1988); ii) linking the travel demand equilibrium to individual-level choice
theory (Oppenheim 1995); and, iii) improving the network flow principles at the basis of the
market equilibrium, including more realistic treatment of route choice behavior (Dial 1995a,
1995b, 1996) and extensions to dynamic network flows (Janson 1991a, 1991b).

Despite the long history of equilibrium travel demand models and the flurry of recent
research progress, this practical modeling strategy is almost completely unknown to
practitioners and not widely known even to transportation academics.  Part of the reason is
undoubtedly due to inertia created through the UTMS initiative and readily available software
that implement this strategy.  However, a very large part of the blame must rest with the
academics and scientists who develop the state-of-the-art in these models but do not attempt to
disseminate this information to practitioners.  While several excellent reviews of the equilibrium
approach exist (Boyce 1984; Boyce, LeBlanc and Chon 1988; Fernandez and Friesz 1983;
Friesz 1985) these are somewhat dated and (more importantly) are oriented towards academics
and scientists who are interested in the extending the modeling frontier.  Consequently, these
reviews are not accessible to practitioners.  This lack of information flow has hampered the
improvement of the state-of-the-practice in travel demand modeling.

This research report attempts to address the gap between the state-of-the-art and the
state-of-the-practice in travel demand modeling.  This report is an accessible review of the
theory and practice of equilibrium travel demand modeling.  This review is intended for
practitioners and beginning students in transportation analysis, modeling and planning.  Key
features of this review include:
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i)  A focus on practical travel demand models.  In this case, “practical” refers
to models that can be implemented at the urban or regional-scale without
undue computational or data requirements beyond the four-step approach.
This selective review focuses on these practical models, although in two
cases currently impractical but very promising models are included for
completeness.

ii)  Discussion focuses on the behavioral assumptions, data requirements,
parameter estimation procedures and solution procedures that are key to
model application.

iii)  Mathematical formulae are placed in appendices and are cross-referenced
and explained verbally within the report body.  This allows the less
mathematically-inclined reader to skip the formulae but still receive an
intuitive understanding of the models’ structures.  Conversely, the more
mathematically-inclined reader can follow the cross-references to the
corresponding formulae.  The cross-referencing system uses an equation
labeling scheme that maintains the section and equation number (e.g., ( 12-
1) is Section 12, equation 1).

These features should render this review accessible to its intended audience, transportation
analysts and planners.

Section 7 of this report explains the basic theory underlying equilibrium travel demand
modeling.  This includes discussion of: i) basic transportation system elements; ii) different types
of network equilibria; and iii) detailed discussion of travel demand market equilibrium and the
weaknesses of the four-step approach.  Section 8 constitutes the major portion of this report.
This section discusses several major equilibrium travel demand models, with the discussion
organized by the type of network equilibrium at each model’s basis.  Discussion of each model
includes; i) major assumptions; ii) model structure; iii) data requirements and parameter
estimation; and, iv) solution procedure.  Section 9 provides a summary of the models reviewed.
This includes a discussion of the major strengths and weaknesses of each model from the
perspective of: i) basic theory; ii) mathematical elegance; iii) computational performance; and,
iv) data and parameter estimation.  Although the research frontier is not the focus of this report,
Section 9 also provides some comments on continued research and development needs that can
facilitate the more widespread usage of these models. Section 10 provides some brief
concluding comments.
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7. BASIC THEORY

7.1 Transportation Systems as Markets

The basic idea underlying the network equilibrium approach to travel demand modeling is a
view of transportation systems as markets.  The network equilibrium approach embeds the
elements typically found in the traditional, four-step approach into a market equilibrium
framework.  As in classical economic market theory, the task is to predict the short-run
equilibrium levels of supply and demand, that is, the number of trips and level of transportation
service in the study area (Fernandez and Friesz 1983).

While the concept of market equilibrium is straightforward, its application to
transportation systems involves special considerations related to two features of these systems:
i) the network basis of transportation systems; and, ii) the existence of demand externalities in
the form of congestion.  In the first case, supply functions are tied to network links; for
example, consider the performance functions typically used to relate flow in a link to its travel
time or cost (see below).  However, the relevant unit of analysis is the individual trip between an
origin and a destination; this trip will use a path consisting of multiple network links.  Therefore,
the equilibrium model must relate each transportation demand (i.e., trip) to multiple supply
components.  In the second case, each traveler’s choice relates to the level of service provided
by available paths between an O-D pair.  In turn, these service levels are influenced by the
choices of other travelers since the performance of service typically degrades as the number of
users increase.  These congestion externalities suggest that the level of service (supply) and flow
(demand) between an origin-destination pair must, in general, consider the service levels and
flows for all origin-destination pairs in the network (Fernandez and Friesz 1983).

Transportation market equilibrium occurs at two levels.  First, the flows through the
network correspond to some stated equilibrium criterion such as Wardrop’s user-optimal
principle (informally, no user can improve his/her cost by unilaterally changing routes; see
below).  This pattern corresponds to the NA phase of the traditional four step approach.  The
second equilibrium level corresponds to the TG, TD and MS components of the four step
approach.  Demand for these “higher-level” components is elastic, meaning that it is responsive
to cost.  Therefore, we can also specify a corresponding market equilibrium criterion at this
level, e.g., no user can improve his/her travel cost by unilaterally changing generation rate,
destination choice or mode choice.  Note that these are tightly linked with the “lower level”
network equilibrium since network flow costs affect the higher level demands while the higher
level demands affect the amount of network congestion and therefore the network travel costs.

7.2 Basic Components

7.2.1 Network Characteristics
A directed graph represents the transportation system in the study area.  The directed graph
consists of a set of network nodes and a set of directed (i.e., “one-way”) arcs connecting
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certain nodes ( 12-1).  Some nodes represent travel origins ( 12-2) while others represent travel
destinations ( 12-3); the remaining generally correspond to street intersections, modal transfer
points and other flow “transfer” locations.  A two node sequence represents each network arc
in the standard “from-node, to-node” format ( 12-4).

Sequences of network arcs comprise network paths.  These paths originate at origin
nodes, terminate at destination nodes and are connected in the sense that the “to- node” of an
arc is the “from-node” of the next arc in the sequence ( 12-5).  An arc-path incidence
variable indicates the relationship between individual arcs and paths ( 12-9): models use this
variable directly to maintain consistent relationships between flows at the arc and path levels.

Travel demand models differ with respect to representation of multiple modes.  Often, a
model will use a single directed graph to represent all modal networks in a study area.  In this
case, different modal flows coexist within the same arc ( 12-10) or within the same path ( 12-
15).  In other cases, an explicit multimodal network is required, that is, each mode has a
separate directed graph.  “Transfer arcs” link these distinct modal networks.

Travel demand models estimate flows at either the arc or path level.  Flow feasibility
requirements ensure that solutions are realistic, consistent between the arc and path levels, and
consistent with aggregate-level travel demands (that is, the known or estimated aggregate flows
between O-D pairs).  These requirements are: i) all path flows are non-negative ( 12-56); ii) the
mode-specific flows on all paths between an O-D pair sum to the aggregate modal flows
between that pair ( 12-57); and, iii) the mode-specific flows on all paths that use an arc sum to
the total modal flow on that arc ( 12-58).

Although travel demand models require consistency between flows at the arc and path
level, an interesting theoretical result is that at equilibrium only arc flows and aggregate travel
demands are unique: path flows are not unique (see Fernandez and Friesz 1983; Sheffi 1985,
66-69).  That is, any set of path flows that are consistent with the equilibrium arc flows is
allowable; in theory, this is an infinite set.  From a practical perspective, this is not a major
problem since we are primarily concerned with flow levels within given elements of the
transportation infrastructure.  However, one must keep in mind that path flow estimates from
these models are not suitable for analysis.

7.2.2 Cost Functions
Similar to network flows, travel costs can be measured at the arc ( 12-13) or path levels.
However, cost functions are usually specified at the arc level: path travel costs are simply the
summed costs for all arcs that comprise that path ( 12-17).

Mode-specific arc travel costs are generally a function of flow, either the mode-specific
flow on that arc ( 12-59) or a function of all modal flows across all arcs in the network ( 12-
60).  The former cost function is referred to as separable, i.e., the flows across different modes
and different arcs can be meaningfully separated.  The latter cost function is referred to as non-
separable, i.e., flows across different modes and different arcs cannot be partitioned
meaningfully into independent flows.  Separable cost functions are not as realistic as non-
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separable functions.  For example, a separable cost function assumes that different modes
sharing an arc do not influence each other (e.g., automobile congestion on a link does not
influence buses using the same link).  Also, separable cost functions do not account for the
interactions of flows on different arcs (e.g., congestion at intersections due to cross-traffic,
interactions among two-way flows on a street).  Non-separable cost functions can consider
these interactions; however, solving the resulting travel demand model is much more difficult.

Typically, arc flow costs functions represent the generalized cost of travel within that
element of the transportation infrastructure.  For separable cost functions, a basic but typically
invoked  function is:

( ) ( )c f d s fa
k

a
k

a
k

a
k

a
k= + ω ( 7-1)

where da
k  is the out-of-pocket expense required for using mode k on arc a (this may also be a

function of flow), ( )s fa
k

a
k is the mode k travel time on arc a associated with flow level fa

k , the

mode k flow on arc a, and ω is a value-of-time (VOT) parameter that translates travel time
into equivalent monetary units, i.e., travelers’ time cost.  One of the two elements of ( 7-1) may
not be present for a given mode within a given arc.  For example, public transit fares may only
be invoked in modal entry or transfer arcs.  The VOT parameter may also be associated with
the monetary expense variable instead of the travel time variable, if desired.

Various models require different restrictions on the behavior of cost functions with
respect to flow levels.  Given the basic format in ( 7-1), these restrictions are through the flow-
based travel time function ( )s fa

k
a
k .   A typically invoked format for this function is (Branston

1976):
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where sa
k is the free-flow travel time, Ba

k is the mode k capacity of arc a, and β1 ,β2 are
empirically-estimated parameters.

7.2.3 Demand Functions
Demand functions relate the amount of O-D flow for each mode to travel costs.  As with the arc
cost functions, demand functions are either separable or non-separable.  Separable demand
functions relate the level of mode-specific flow between an O-D pair to the minimum cost for
that mode and O-D pair only ( 12-61).  In contrast, non-separable demand functions relate the
mode-specific flow between an O-D pair to the minimum travel costs across all O-D pairs and
modes ( 12-62).  As with arc cost functions, non-separable demand functions are more realistic
but result in model formulations that are more difficult to solve.
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In some models, the O-D demands are fixed and exogenous, meaning that aggregate
O-D flows are required as external data rather than predicted as a model outcome.  Evans
(1976) provides an example of an endogenous, separable demand function:

( )D A B Cij i j ij ij= −exp *γ ( 7-3)

where Dij is the aggregate flow between origin i and destination j, Cij* is the minimum travel cost
between the O-D pair, γij is an estimated parameter, and Ai and Bj are “balancing factors” or
parameters chosen so that outflows from origins and inflows to destinations sum to totals known
from exogenous data (i.e., the total amount of travelers leaving each origin and the total amount
of travelers entering each destination).  This demand function is essentially a doubly constrained
spatial interaction model, that is, a spatial interaction models whose origin outflows and
destination inflows are constrained to match known sums  (see Fotheringham and O’Kelly
1989; Wilson 1967, 1974).

7.3 Types of Transportation Equilibria

7.3.1 Network equilibria

7.3.1.1 User optimal (UO)

7.3.1.1.1 User optimal-strict (UO-S)
The most common type of network equilibria analyzed is the user optimal (UO), originally due
the Wardrop (1952).  The traditional, strict definition, referred hereafter as user optimal-strict
(UO-S), is:

(UO-S) At network equilibrium, no traveler can reduce his or her travel costs
by unilaterally changing routes (i.e., independently change routes without other
users’ route changes).

Alternatively: All used routes between an O-D pair have the same, minimal cost
and no unused route has a lower cost.

This implies the following network flow characteristics.  First, positive flow for a mode on a
route implies that it must have a travel cost equal to the minimum cost for that mode between the
particular O-D ( 13-1).  Second, any route with a cost greater than the minimum for a mode
implies that the flow level for that mode is zero on that route ( 13-2).  In other words, for each
mode, flow only occurs on the minimum cost routes between each O-D pair, i.e., no traveler
has a less costly alternative route (Smith 1979).

The UO-S conditions imply a tenable behavioral motivation but require strong
assumptions about travelers reactions to conditions within the network.  The fundamental
behavioral postulate is that travelers follow the “cheapest” available route for their user class.
While this basic motivation seems reasonable, strict adherence to this behavior at an individual-
level is less tenable.  The UO-S conditions imply travelers’ perfect decision-making capabilities
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and perfect knowledge about network conditions.  In other words, travelers know the exact
cost on each available route and react to these costs with perfect accuracy.  Nevertheless, many
equilibrium models follow the UO-S conditions since they result in tractable formulations and
provide a “best-guess” about traveler decisions lacking other behavioral data.

7.3.1.1.2 UO-General (UO-G)
Smith (1979) proposed a generalization of the UO conditions that imply less strict behavioral
assumptions.  Paraphrasing slightly, the user equilibrium-general (UO-G) conditions are:

(UO-G) Travelers change routes in the next time period in a manner that
reduces total cost based on the current route costs.

Travelers change routes in the next time period (e.g., “tomorrow”) based on the current time
period’s costs (e.g., “today”).  Therefore, travelers do not react to network conditions
instantaneously.  Also, the current time period flow pattern influences, but does not determine,
the flow pattern in the next time period.  In general, a number of flow patterns rather than a
single flow pattern in the next period will satisfy UO-G (Fernandez and Friesz 1983; Smith
1979).

Despite the temporal element in the definition, this principle can also characterize static
flow patterns since it describes conditions for flow stability. The UO-G conditions state that a
flow pattern is UO if any other flow pattern would result in higher total costs ( 13-3).  This
expands the UO-S conditions.  If the network is at UO-S, the flow pattern will be stable since
no traveler can switch routes in the next time period and reduce total cost.  However, UO-G
also allows flow patterns that do not satisfy UO-S but nevertheless are reasonable from a
behavioral perspective.  Under UO-G, individual travelers switch to more expensive routes only
if that change does not lead to an increase in total cost across all travelers.  Thus, some travelers
are allowed to make “mistakes” if this does not “harm” other travelers in toto.

7.3.1.2 Dynamic User Optimal (DUO)
Static equilibria assume that the travel demand pattern in a given study area converge to a
“steady-state” condition  in which temporal fluctuations do not occur.  Analysts recognize that
temporal fluctuations in NA, MS, TD and TG do occur in reality.  Since transportation planning
is oriented traditionally towards infrastructure planning and broad policy evaluation, ignoring
minor temporal fluctuations is defensible since these plans and policies attempt to accommodate
the general travel demand pattern.

There have been recent attempts to incorporate dynamic properties of travel demand
patterns.  These attempts are motivated by the U.S. federal policy shifts away from large
infrastructure investments in urban area.  Manifestations of this policy shift such as intelligent
transportation systems (ITS) require detailed temporal predictions of traffic flows and
congestion and the implementation of non-transportation, activity-based solutions such as flex-
time and telecommuting.  Another motivation for dynamic travel demand models is the difficulty
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in capturing adequately the environmental impacts of travel demand patterns in general and
traffic congestion specifically.  Assessing the impacts of traffic on ambient air quality requires
estimates of behaviors such as engine cold-starts and speed variations.  These factors affect air
quality more than aggregate throughput per se (Kulkarni et al. 1996).

“Equilibrium” is a much broader concept in the dynamic realm.  A fundamental
consideration is the equilibrium’s time frame.  Time can be viewed as discrete (i.e., divided into
finite intervals) or continuous.  In addition, equilibrium conditions can be stated for “within-day”
or intra-periodic, “day-to-day” or inter-periodic or combined intra/inter-periodic dynamics.
Within-day dynamics capture daily fluctuations in travel demand both with respect to inherent
fluctuations as well as unplanned disturbances such as road closings, accidents, etc.  Within-day
dynamics also allows modeling timing decisions for trip generation; this is important for
discretionary travel as well as flex-time-based commuting in congested networks.  Day-to-day
dynamics capture the slower learning process of travelers as they acquire information about the
travel environment.  In addition, the existence of a traditional transportation equilibrium is not
guaranteed, particularly with respect to continuous time dynamics.  The system may converge to
different attractors and display complex behavior as with dynamical systems in general
(Cantrella and Cascetta 1995).

As the discussion in the previous paragraph implies, there is a wide-range of dynamic
equilibrium formulations (e.g., Cantrella and Cascetta 1995; Friesz et al. 1994; Friesz,
Bernstein and Stough 1996; Ran and Boyce 1994; Ran, Hall and Boyce 1996).  Several of the
continuous time formulations have similar structure to the UO-G  conditions (more specifically,
they share the structure of a variational inequality problem; see Nagurney 1993).  Many are
oriented specifically towards ITS rather than travel demand prediction.  For example, the
formulations of Ran and Boyce (1994) and Ran, Hall and Boyce (1996) assume that the
amount of flow entering each transportation link are control variables in their dynamical system.
Real-world manifestations of these variables could be traffic control and ITS devices such as
variable message signs, variable time traffic lights and information provided to drivers that
influence or direct their route choices.

Due to the orientation of this review towards pragmatic travel demand models, the
dynamic user optimal (DUO) principle considered here is a discrete-time, within-day
formulation by Janson (1991a, 1991b).  This DUO formulation has resulted in a very practical
dynamic NA model and solution procedure (to be discussed later).  This DUO principle is:

(DUO) At network equilibrium, no traveler who departed during the same
time interval can reduce his or her travel costs by unilaterally changing routes.

Alternatively: All used routes between an O-D pair have the same, minimal cost
and no unused route has a lower cost for travelers that departed during the
same time interval.

This DUO principle implies the following network flow characteristics.  First, positive flow on a
route for users who departed during a given time interval implies that it must have a travel cost
equal to the minimum cost for those users between the particular O-D pair ( 13-4).   Second,
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any route with a cost greater than the minimum for users who departed during a given time
interval implies that the flow level for those users is zero ( 13-5). Note that these conditions are
a direct extension of the UO-S conditions.  Indeed, UO-S is a special case of this DUO
principle (Janson 1991).

DUO implies the same harsh behavioral assumptions as UO-S. In addition, the
treatment of time as discrete limits the resolution of these dynamics.  However, the introduction
of a dynamic component increases the realism and usefulness of the UO equilibrium principle.
Also, as stated above, this equilibrium principle does allow for a pragmatic dynamic NA model
that is tractable computationally and has reasonable data requirements.

7.3.1.3 System Optimal (SO)
While the UO conditions minimize individual travel costs, it does not in general minimize total
cost for travelers as a whole.  The UO-S conditions only require that the flow pattern minimizes
costs on an individual basis.  The UO-G conditions allow flow changes that do not increase total
cost but do not require this to be minimal for individuals.  Minimizing individual costs does not
equate to minimizing total costs when congestion is present in the network.  Under these
conditions, each traveler’s route choice influences the costs of other travelers.

The UO-S principle assumes that travelers’ do not consider the externalities of their
decisions: travelers only perceive their personal travel cost and not the additional costs imposed
on others by their route choices (Ortuzar and Willumsen 1990).  To accommodate this
additional decision principle, Wardrop (1952) formulated a second, system optimal (SO)
principle:

(SO) At network equilibrium, the total (or average) travel cost is minimum.

A flow pattern that satisfies this principal is appealing from a society-wide perspective.  An SO
flow minimizes the total operating cost of the network, implying efficiency (Fernandez and Friesz
1983).  Also, if we accept total cost as a surrogate for the system-wide use of energy resources
and output of pollution, we can see that this pattern would minimize these negative impacts.
However, this flow pattern is not likely to occur in practice since it requires travelers to make
joint decisions to minimize total cost rather than their individual cost.  At SO, it will be likely that
travelers can unilaterally change routes to reduce their individual costs, meaning that the pattern
will be difficult to sustain without some external control mechanism (Fernandez and Friesz 1983;
Sheffi 1985).

The difference between UO-S and SO is clear when one considers the type of
information required for travelers to achieve each pattern.  UO-S postulates that travelers
consider the average cost on routes: travelers choose the route between an O-D pair that has
the minimum average cost for their user class ( 13-1), ( 13-2).  In order to obtain the SO
pattern, travelers only consider the marginal costs for routes, that is, the added cost of their
entry into a route.  The SO conditions imply that, at equilibrium, flow only occurs along routes
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whose marginal cost for the mode is minimum for that O-D pair ( 13-6), ( 13-7).  Thus,
travelers will only choose routes that minimize their impact on total travel cost.

SO-based model formulations have two valuable features.  First, SO flow patterns
provide a valuable benchmark for assessing the efficiency of other flow patterns (Sheffi 1985).
In addition, while the SO principle has traditionally been viewed as an unrealistic ideal, the
increasing popularity and sophistication of congestion pricing policies and ITS in general can
make these conditions an obtainable goal for real-world settings.

7.3.1.4 Stochastic user optimal (SUO)
The stochastic user optimal (SUO) is a relaxation of a strict behavioral assumption implied by
UO.  In particular, SUO assumes cost minimization but allows cost perceptions to vary among
travelers.  The SUO principle is (Daganzo and Sheffi 1977):

(SUO) At network equilibrium, no traveler can reduce his or her perceived
travel costs by unilaterally changing routes.

Alternatively: no traveler believes he or she can reduce costs by unilaterally
changing routes.

The SUO principle assumes that the route travel costs include random components that reflect
variations in travelers’ perceptions.  Randomness results from factors such as limited
information, decision making inaccuracies or non-measured route attributes (Daganzo and Sheffi
1977).  Although random variables, travel costs are related in a systematic and rational manner
to the actual travel costs; specifically, the random travel costs result from an “error” distribution
around the actual route cost.  The error has an expected value of zero, meaning that the
expected value of the random route cost is equal to the actual cost ( 13-10),( 13-11). Thus, we
expect perceived route costs overall to be accurate but allow for variations in accuracy across
travelers

The SUO conditions require a dispersed allocation of the flow between an O-D pair
according to the probability that each route is cheapest for travelers ( 13-8), ( 13-9).  Different
assumed probability distributions for the error component result in different analytical models for
calculating the route choice probabilities (e.g., Sheffi and Powell 1981, 1982).  However, at
equilibrium the actual route costs for used routes will not be equal and minimal as in the UO
case (Sheffi 1985).  In general, under SUO each route between an O-D pair will have a non-
zero flow level, although it may be small in some cases.

Although SUO has a realistic behavioral foundation, it is not as widely used as the UO
principle in model formulations.  This is due to the route enumeration problem. Calculating
route choice probabilities generally requires specifying each possible route between an O-D
pair: this set can be extremely large.  SUO can be solved by identifying a subnetwork of likely
routes rather than using all possible routes between an O-D pair, although this introduces some
error (e.g., Damberg, Lundgren and Patriksson 1996; Dial 1971).   In addition, the inherent
nature of the stochastic flow pattern makes it difficult to search for an optimal solution to the
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model (Sheffi 1985).  Finally, under highly congested conditions the SUO pattern closely
resembles the UO-S pattern.  As the network becomes congested, the equilibrium effects
become stronger than the route dispersion effects due to the stochastic route choice component
and the SUO solution begins to resemble the UO solution (see Sheffi 1985, 336-338 for a clear
and intuitive demonstration).  Nevertheless, recent breakthroughs in SUO techniques are
making this theoretically appealing approach more viable from a practical perspective (e.g.,
Leurent 1995).  Some of these techniques will be discussed below.

7.3.2 Market equilibrium and the shortcomings of the four-step approach
The “higher-level” demand patterns for TG, TD and MS are linked very tightly to the
equilibrium pattern at the network-level.  This results from these demands being elastic (that is,
responsive) to the network flow costs.  For example, the flow generated from origins can be
influenced by travel costs since travelers may postpone or substitute other activities (e.g.,
telecommuting or teleshopping) when costs are high.  Similarly, the amount of flow attracted to a
destination can affect its attractiveness, i.e., greater congestion makes a destination less
attractive to travelers.  The amount of flow on the street network will decrease if travel costs are
high and travelers switch to other modes  In turn, postponing trips and switching to other
destinations or modes reduces the network flow levels and therefore can lower travel costs.

At market equilibrium, the travel pattern should exhibit stability that simultaneously
encompasses all four of the travel demand components.  For example, at a UO-type market
equilibrium, no traveler should be able to unilaterally change his or her trip propensity (TG),
destination choice (TD), modal choice (MS) nor route choice (NA) without incurring higher
costs.  As noted above, since these components are tightly linked it is impossible to solve for
each component in isolation without considering its effects on the other components.  (Note,
however, that empirical measurement of  linkages between daily trip generation rates and other
travel demands has proven to be problematical; see Southworth 1995).

The tight interconnections among the different travel demand components are clear
when examining the formal conditions for market equilibrium given a UO-S network equilibrium.
As with a UO-S network equilibrium, we identify the minimum travel cost between an O-D pair
for each mode ( 13-13) and only allow positive flow levels on routes that exhibit that minimal
cost ( 13-12).  We also require the summed route flows for each user class between an O-D
pair to equal the total travel demand for that O-D pair ( 13-14).  Similarly, route costs are also
required to be the sum of the costs for the arcs that comprise each route ( 13-15).  Finally, all
route flows and minimum costs must be non-negative ( 13-16).  However, unlike the UO-S
conditions, the O-D travel demands are no longer fixed and exogenous but dependent on the
minimum route costs between the O-D pair.  The summed route flows between an O-D for a
mode now must equal an aggregate travel demand level determined by the travel costs between
that pair ( 13-14).  Since these costs in turn depend on route flows, we have a “Gordian Knot”
of intertwined influences that must be met simultaneously.
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The functional dependencies among the different travel demand components in the
market equilibrium conditions requires any travel demand model to link in a theoretically
consistent manner the different travel demands, their influences on travel costs and the
influence of these costs on demands.  Without these explicit linkages, the model does not meet
the market equilibrium requirements and is consequently misspecified (Aashtiani and Magnanti
1981; Fernandez and Friesz 1983).  The traditional, four-step approach violates these market
equilibrium conditions (or, more correctly, does not guarantee these conditions) since it does
not contain theoretically consistent links among the components nor an explicit mechanism for
satisfying the equilibrium conditions simultaneously across all components.  In contrast,
convergence is the very essence of the equilibrium approach and is central to the solutions
generated by these models (Boyce, Zhang and Lupa 1994).

Several studies have demonstrated the weakness of the four-step approach.  As far
back as the mid-seventies, Florian, Nguyen and Ferland (1975) determined that sequential
estimation with feedback loops of TD6NA does not converge to a consistent solution.  More
recently, a study by COMSIS Corporation (COMSIS 1996) compared the four-step approach
without feedback to the same approach with several different feedback mechanisms and a
theoretically-consistent network-equilibrium approach, specifically, the Evans (1976) algorithm
(referred to as the “method of optimal weighting” in the report).  The “direct (feedback)
method” did not consistently converge to an equilibrium solution.  Feedback mechanisms based
on the method of successive averages (MSA) compared favorably with Evans (1976) model
with respect to convergence results, although the study recognizes that the MSA-based
approach may not perform as well in large networks with high levels of congestion.

An extensive analysis by Boyce, Zhang and Lupa (1994) compared the four-step
procedure, with and without feedback loops, with the Evans (1976) model.  Specifically, the
methods compared: i) one iteration through the TD6MS6NA with an “all-or-nothing” (AON)
network assignment; ii) multiple iterations through TD6MS6NA with AON assignment; iii)
multiple iterations through TD6MS6NA with AON assignment and MSA applied at each
iteration; iv) multiple iterations through TD6MS6NA with UO-S assignment and MSA; and, v)
the Evans (1976) algorithm.  In many respects, the COMSIS (1996) report is similar to this
study, although Boyce, Zhang and Lupa (1994) conclusions are more negative with respect to
the four-step/feedback alternatives to the network equilibrium-based approach.  The Evans
(1976) algorithm was superior in reproducing known data, particularly key variables such as
automobile link flows and total automobile trips, with only modest increases in computational
effort compared with the four-step/feedback loop alternatives.

Boyce, Zhang and Lupa (1994) conclude their research paper with several
recommendations that are relevant to the objectives of this current report.  These
recommendations are:
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i)  Progress in improving travel forecasts will not result from solving the four-
step approach with feedback.  Rather, progress will be achieved when
professional practitioners begin to understand the requirements of the
desired equilibrium solutions;

ii)  Practitioners should insist that software vendors correctly implement
methods for achieving equilibrium solutions;

iii)  Federal agencies such as FHWA should conduct short courses to introduce
practitioners to equilibrium-based approaches;

iv)  University instructors and textbook authors should update their courses and
instructional material to produce a new generation of professionals who
understand the principles of equilibrium travel models.

This research report attempts to meet some of the Boyce, Zhang and Lupa (1994)
recommendations by providing an accessible review of transportation equilibrium theory and
practical models within that theory.  The next section of this report reviews some practical
equilibrium-based travel demand models.
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8. EQUILIBRIUM TRAVEL DEMAND MODELS

8.1 Overview

This section of the report provides an overview of selected models that determine market
equilibrium travel demands for a study area.  The discussion classifies models according to the
network equilibrium assumed.  Note that the previous section only identified the theoretical
conditions for network and market equilibrium.  This section discusses practical models whose
solutions correspond to the theoretical conditions discussed previously.  Table 8-1 provides an
overview of equilibrium travel demand models reviewed in this section.

Travel demand components

Network
equilibrium class

NA NA/MS NA/MS/TD NA/MS/TD/TG

UO-S Sheffi (1985) Evans (1976) Florian and
Nguyen (1978)

STEM (Safwat and
Magnanti 1988)

UO-G T2 (Dial 1995b) Dafermos (1980) Dafermos (1982)

DUO Janson (1991a,
1991b)

SUO Fisk (1980) Super- and hyper-networks (Sheffi and Daganzo 1980)

UO-S/SUO Trip consumer approach (Oppenheim 1995)

Table 8-1: Overview of equilibrium travel demand models

The travel demand models discussed below generally follow the equivalent
optimization approach first pioneered by Beckmann (Beckmann, McGuire and Winsten
1956).   It is impossible to overstate the impact and importance of this initial work: Beckmann
and colleagues single-handedly launched the entire field of network equilibrium-based travel
demand modeling.  All subsequent work in the static and dynamic equilibrium realms can trace
their origins to this research.

The basic equivalent optimization strategy is to first specify a combined travel demand
model, i.e., the combined NA/MS/TD/TG components.  Then, an equivalent optimization
problem is formed such that its solution corresponds to a market equilibrium of the combined
travel demand components stated in the initial model.  Typically, this problem contains a
objective function to be minimized and constraints that represent flow and aggregate demand
feasibility requirements.  The objective function typically corresponds to some type of cost
function, meaning that the resulting market equilibrium is the minimal cost travel pattern subject
to the assumed equilibrium conditions.
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In order for the equivalent optimization problem to correspond to a travel demand
market equilibrium, we must be assured that its solution is unique and equivalent to the desired
theoretical equilibrium conditions.  Equivalency can be assured by comparing the “first-order”
(first derivative) conditions for optima to the theoretical conditions for equilibrium.  Discussion of
these conditions is beyond the scope of this report.  Sheffi (1985) provides a basic discussion of
these conditions.  Boyce (1984) and Boyce, LeBlanc and Chon (1988) review equivalency
conditions with respect to particular travel demand models.

Solution uniqueness can be assured if the objective function to be minimized is convex.
This condition can be visualized roughly by imagining a “u-shape” in two-dimensions or “bowl-
shape” in three dimensions.  The required shape is analogous for solution spaces in higher
dimensions (where the number of dimensions is equal to the number of variables), although more
difficult to visualize.  For a more rigorous definition of convexity, see Varian (1992).  To ensure
convexity of the objective function, we must impose constraints on the travel demand
components, particularly with respect to the arc flow cost functions and the demand functions.
The discussion below will identify the assumptions required for each model.

In the interest of brevity and due to the pragmatic orientation of this report, this section
only discusses the equivalent optimization problems.  The travel demand components
corresponding to these optimization problems are not discussed directly.  This does not limit
greatly the understanding of the models and their requirements from a practical perspective: data
inputs, parameter estimation and solution procedures can still be readily identified.

8.2 Model Descriptions

8.2.1 UO-S-based approaches

8.2.1.1 NA (Sheffi 1985)

8.2.1.1.1 Assumptions

i)  one mode (although multi-modal extensions are possible);

ii)  separable cost functions ( 12-59);

iii)  non-negative cost functions ( 12-63);

iv)  increasing cost functions ( 12-64);

v)  O-D flows are fixed and exogenous.
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8.2.1.1.2 Model structure
The basic UO-S NA equivalent optimization problem is originally due to Beckmann, although
the excellent and unfortunately out-of-print text by Sheffi (1985) provides a very clear and
accessible statement.  UO-S NA optimization problem has a straightforward structure, although
Sheffi (1985) argues that the objective function does not have an intuitive economic or
behavioral interpretation.  The objective function consists of a single component: the summed
cumulative costs of each arc cost function in the network  given its current flow ( 14-1).
Minimizing the sum of these flow costs across all arcs corresponds to the theoretical conditions
that each traveler is on a path that is tied for the minimum cost between the O-D pair.

The decision variables in the optimization problem are the flow levels on each arc; the
objective is to choose these flows so that the objective function is minimized.  The arc flow
levels are subject to the following constraints: i) the total flow on arc must equal to the summed
flow for all paths that use that arc ( 14-2); ii) the flow on all routes between an O-D pair must
sum to the aggregate travel demand for that pair ( 14-3); and, iii) all path flows must be non-
negative ( 14-4).  While the objective function is stated in terms of arc flows, the constraints are
stated in terms of path flows.  These are related to each other through an arc-path incidence
variable ( 12-9).

The objective function of the UO-S NA optimization problem is convex and therefore
has a single minimum point.  Convexity is ensured by the assumptions of separable, non-
negative and increasing arc cost functions.  While the non-negativity and increasing assumptions
are reasonable, the separable cost function assumption is restrictive as noted above.

8.2.1.1.3 Data requirements and parameter estimation
The data required for solving the UO-S NA are: i) a transportation network and O-D zonation
system for the study area; ii) the aggregate flows between each O-D pair (this also implies that
the total outflow from origins and the total inflows to destinations are known); iii) arc flow cost
functions that meet the constraints specified above (e.g.,  ( 7-1), ( 7-2) ); and, iv) the estimated
parameters for the arc flow cost functions.  Of these data/parameter requirements, only iv)
presents major difficulties.

Estimating the VOT parameter in equation ( 7-1) is necessary if monetary expenses are
relevant (e.g., tolls on certain links).  This requires some type of experiment or survey in which
travelers make choices among different combinations of travel times and monetary costs.
Estimating the parameters of an arc performance function such as ( 7-2) can be expensive and
time-consuming.  Branston (1976) and Chp. 13 of Sheffi (1985) provide a discussion of
measurement and estimation issues.  More recently, Fisk (1991) extended a probabilistic traffic
flow to provide link travel time/flow relationships appropriate for NA.  The model parameters
relate to the mean and variance of free flow time.  This allows parameter estimation without the
need for extensive flow/travel time observations as described in Branston (1976) and Sheffi
(1985).
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There is a strong underlying belief in the literature that the UO-S equilibrium conditions
are the “natural” stable flow patterns that occur in real-world settings.  Therefore, a great deal of
attention has been directed towards the UO-S NA procedure and its use in broader travel
demand models.  However, as Fernandez and Friesz (1983) note, there have been few
attempts to validate the UO-S NA procedure with empirical evidence.  Florian and Nguyen
(1976) provide one of the few empirical validations.  Using empirical data from Winnipeg, they
found generally good correspondence between the UO-S NA predicted flows and observed
flows.  However, they note that the procedure tended to overpredict arc and route travel times.
They also comment on the sensitivity of the results to the arc performance function parameters
and the network details (i.e., the level of network aggregation).

8.2.1.1.4 Solution procedure
Several heuristic solution methods have been formulated and applied to the UO-S NA problem.
These include the capacity restraint method and the incremental assignment method.
Capacity restraint requires a sequence of all-or-nothing assignments (i.e., all flow between an
O-D pair is assigned to the shortest path between that pair) in which the previous assignment’s
travel costs are used for the current iteration.  A problem with this approach is that the algorithm
can get trapped in “cycles” where flow changes “bounce” back and forth for a subset of the
network while other subsets are ignored.  A “smoothing” procedure which combines the last
two iteration’s travel costs in a weighted average ameliorates this problem.  However, neither
version of the capacity restraint method converge to the desired UO-S conditions (Sheffi 1985).
The incremental assignment method divides the O-D flow matrix into portions and performs an
all-or-nothing assignment for each portion.  After each flow portion loads on the network, the
travel costs are updated and the next portion loads based on these updated costs.  However,
this heuristic does not converge to the desired UO-S equilibrium conditions (Sheffi 1985).

A method that generates a network flow pattern consistent with the UO-S equilibrium
conditions is the convex combinations method (also known as the Frank-Wolfe algorithm).
This procedure is a “feasible direction method.” The algorithm starts with some feasible solution
(although not an equilibrium solution, i.e., a solution that only satisfies the flow and non-
negativity constraints).  At each iteration, the algorithm determines the direction and step-
length or move size within the solution space that best “improves” (i.e., reduces the current
value) of the UO-S NA objective function.  This continues until the solution can no longer be
improved (Sheffi 1985).  Figure 8-1 illustrates this method.

The direction-finding step of the convex combinations method involves linearizing or
determining a linear approximation of the objective function at the current solution.  This occurs
by computing an auxiliary solution, i.e., an “alternative solution” based on the current solution.
The two solutions form a line that determine which direction to move, i.e., which network flows
and travel demands should be adjusted.  However, since this line is only an approximation
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typically we do not want to move all the way to the auxiliary solution.  Instead, we refer back to
the original objective function and determine the optimal step size.  This requires solving for the
move-size that minimizes the objective function in that direction.  Since this is a single parameter,
we can easily solve for this value using a one-dimensional search algorithm.  See Sheffi (1985,
Chp. 4) for an excellent discussion of this strategy.

Figure 8-1: Convex combinations method (after Sheffi 1985)

Current solution Auxiliary solution

Feasible region boundary

Objective function

Direction

Step-length
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The major computational effort in the convex combination method is computing the
auxiliary solution.  The auxiliary solution is an all-or-nothing assignment of O-D flow on the
shortest path between the O-D pair based on the current flow levels (which are considered
fixed during the given iteration).  Therefore the algorithm must solve the set of shortest paths
from each origin to all destinations during each iteration.

A problem with the convex combinations method is its slow convergence.  As the
algorithm nears optimum the step sizes decrease.  Some improvements have been suggested for
speeding-up convergence, although they do not seem to be widely implemented (Ortδzar and
Willimsen 1990).  Recently, Jayakrishnan et al. (1994) proposed a more efficient gradient
projection algorithm for the UO-S NA problem.  Its basic structure is very similar to convex
combinations: the algorithm consists of a direction-finding and move-size steps.  In contrast with
convex combinations, the direction-finding step uses a non-linear approximation of the objective
function in the neighborhood of the current solution.  This speeds convergence as the algorithm
approaches the optimum.

The convex combinations methods is not limited to UO-S NA: this algorithm can be
applied widely to network equilibrium-based travel demand models.  Adapting convex
combinations to other formulations generally requires modification of the direction-finding step.
These modifications will be discussed below.

8.2.1.2  NA/TD (Evans 1976)

8.2.1.2.1 Assumptions
i)  one mode;
ii)  separable cost functions ( 12-59);
iii)  non-negative cost functions ( 12-63);
iv)  increasing cost functions ( 12-64);
v)  total outflows from origins and total inflows to destinations fixed and exogenous;
vi)  TD component is a separable demand function in the form of a spatial interaction

(“gravity”) type function with an exponential cost function ( 14-5);
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8.2.1.2.2  Model structure
The Evans (1976) TD/NA model extends the UO-S NA model to include a TD component.
O-D flows are influenced by the minimum route cost between each pair through a spatial
interaction or “gravity”-type TD component.  This TD component is not explicit in the equivalent
optimization problem but rather is implied by the optimality conditions for that problem.  Evans
(1976) main contribution was to combine foundational work by Wilson (1967, 1974) on
“entropy-maximizing,” doubly constrained spatial interaction models within the UO-S-based
NA optimization problem developed by Beckmann, McGuire and Winsten (1956).  The joint
optimization problem combines in a consistent manner the flow-related costs associated with the
network equilibrium, a TD based on the route costs and the TD’s influence on the network flow
levels.

Evans (1976) NA/TD model equilibrium requires solving a constrained minimization
problem similar to the UO-S-based NA problem.  The objective function ( 14-6) consists of
two components: i) a arc-flow cost component equivalent to the NA objective function; and, ii)
an entropy term that corresponds to the trip distribution model.  The decision variables to be
solved when minimizing this function are the flow levels on each arc and the aggregate flows
between each O-D pair.

The TD term of the objective function allocates flows according to entropy-maximizing
principles.  In brief, this requires the flow pattern to be the most likely or highest probability
pattern consistent with known aggregate information about the system (see Fotheringham and
O’Kelly 1989; Webber 1977).  In this case, the known information include: i) total outflows
from each origin; ii) total inflows to each destination; and, iii) the minimum travel costs between
each O-D pair.  The flow variable values that minimize the TD component of the objective
function generate the most likely TD pattern given this information.

Constraints on the Evans (1976) minimization program generally correspond to
standard flow totaling and non-negativity conditions.  These include: i) flows on all routes
between an O-D pair must sum to the total flow between that pair ( 14-7); ii) flows on all routes
that use an arc must sum to the total flow on that arc ( 14-8); iii) the flows entering each
destination from all origins must sum to the known total inflows to that destination ( 14-9); iv)
outflows from each origin to all destination must sum to the known outflows from that origin (
14-10); v) all path flows and aggregate O-D flows must be non-negative ( 14-11), ( 14-12).

Evans (1976) provides a rigorous proof that the TD/NA objective function is convex
and therefore has a unique minimum.  From an intuitive perspective, we can note that the NA
component’s convexity is ensured by the same arc cost function assumptions as in the NA
optimization problem (separable, non-negative and increasing).  Also, the TD component is a
convex function.  Since the sum of two convex functions is also convex, we know the overall
objective function is convex.



30

8.2.1.2.3 Data requirements and parameter estimation
In addition to the estimation issues discussed in conjunction with the UO-S-based NA problem,
we now must estimate the parameters of the TD component’s cost function.  These parameters
relate the effect of the minimum travel cost between an O-D pair on the amount of travel flow
between that pair.  Evans (1976) is silent on these estimation issues. Sheffi (1985) discusses
these issues in some, although not complete, detail.  To examine these estimation issues, we
must turn to the literature on spatial interaction models.

Two general methods exist for estimating the parameters of a spatial interaction model
such as the Evans (1976) TD component, namely, ordinary least squares (OLS) and
maximum likelihood (ML) estimation.  In both cases, the estimation procedure requires
estimates of: i) the minimum travel costs between O-D pairs; and, ii) aggregate flows between
O-D pairs.  Obtaining these data items can be problematic since both are the expected
outcomes of the modeling exercise itself.  In the former case, the analyst may need to develop a
surrogate measure for the minimum travel costs since this is determined by the NA.  Possible
surrogate measures include: i) assuming “free flow” (i.e., uncongested)  conditions and
computing the shortest path between an O-D pair and its resultant travel time; or, ii) conducting
a survey and asking respondents for their travel time estimates between particular O-D pairs.
Both surrogates are likely to introduce error.  A third possibility, discussed by Florian and
Nguyen (1978), is to perform a UO-S-based NA using the known O-D matrix to obtain
reasonable estimates of the O-D minimal travel costs.

Obtaining an O-D flow matrix will require either primary (survey) data, updating existing
data or through some estimation procedure.  Updating existing but dated O-D matrices can
occur using methods such as growth factor methods, although these methods are reliable only
over short-term planning horizons (see Ortδzar and Willumsen 1990).  Procedures also exist for
estimating O-D matrices from link flow observations.  Sheffi (1985) provides a basic albeit
dated discussion of these methods; other references include Cascetta and Nguyen (1988), Fisk
and Boyce (1983), Nguyen (1984), Speiss (1987) and Yang, Iida and Saski (1991, 1994).
Bell (1991) discusses a statistical procedure for estimating O-D matrices from combined traffic
counts/survey data.

Once the required data items are in place, the analyst must choose between OLS and
ML estimation of the TD parameters.  Fotheringham and O’Kelly (1989) provide an accessible
discussion of both estimation procedures.  Sen and Smith (1995) provide a more rigorous
review of OLS and ML estimation as well as performance results of different algorithms with the
approaches.

OLS is the classic and commonly-known “regression” approach to estimation.  This
requires transformation of the non-linear TD model to a linear form.  Once the model is
linearized, standard statistical packages such as SPSS™ or SAS™ can be used to estimate the
parameters.  While straightforward, OLS estimation of the TD parameters has some problems,
including difficulty dealing with zero O-D flows and misleading goodness-of-fit statistics
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reported by standard statistical packages when applied to a log-transformed model. These
problems do not occur with ML estimation procedures.  In this case, we are trying to generate
the model parameters that maximize the likelihood of reproducing the observed data from a
theoretical distribution.  For example, with a doubly constrained spatial interaction model we
can typically assume that the interactions result from a multinomial probability distribution (Batty
and Mackie 1972).  Then, we estimate the model parameters by determining values that
maximize the likelihood that the observed O-D flow matrix would result from this theoretical
distribution.  Determining these parameter values requires some type of non-linear search
technique such as the Newton method (again, see Fotheringham and O’Kelly (1989) or Sen
and Smith (1995) for discussions).  While ML estimates are more reliable, procedures for ML
estimation are not as available as OLS procedures.  A spatial interaction model-specific
estimation package that uses ML procedures is SIMODEL (Williams and Fotheringham 1984).

As noted above in the section on “Market equilibrium and the shortcomings of the four-
step approach,” the Evans (1976) model has been tested empirically.  In fact, it is one of the
few equilibrium-based travel demand models that has been subject to empirical validation.   The
studies by COMSIS (1996) and Boyce, Zhang and Lupa (1994) demonstrate the superiority of
the Evans (1976) model relative to the classic four-step approach.  However, more extensive
empirical validation of this and other equilibrium-based travel demand models is certainly
warranted.

8.2.1.2.4 Solution procedure
Evans (1976) developed a very efficient solution procedure for the TD/NA model, specifically,
the Evans partial linearization technique.  This technique is closely related to the convex
combinations method; the two methods differ primarily with respect to the direction-finding step
at each iteration.  The direction-finding step in Evans conducts only a partial linearization of the
objective function at the current solution. Evans’ method is only appropriate when O-D travel
demands are consistent with a doubly constrained spatial interaction model (Friesz 1985).

The direction-finding step of the Evans’ partial linearization technique involves
computing an auxiliary solution for the O-D flows.  The algorithm computes the shortest path
tree from an origin to all destinations based on the current iteration’s flow costs.  Based on these
costs an auxiliary O-D flow matrix is computed using the partially linearized objective function.
In turn, the auxiliary O-D flows are used to calculate auxiliary link flows.  Then, an optimal step-
size routine determines the proper adjustment of the current solution.

Evans’ (1976) method is generally more efficient computationally than applying the
convex combinations to the same problem.  Although it still requires the major computational
effort of computing shortest paths from each origin, the algorithm tends to converge faster than
convex combinations since it adjusts the entire O-D matrix during each iteration.  In contrast,
convex combinations updates only a subset of the O-D flows during each iteration.  The relative
advantage of Evans over convex combinations is related to the number of positive interzonal
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flows in the O-D matrix. The performance of the convex combinations method may be more
competitive if the O-D matrix contains some zero elements (Boyce, LeBlanc and Chon 1988).

8.2.1.3 NA/MS/TD (Florian and Nguyen 1978)

8.2.1.3.1 Assumptions
i)  two modes (“automobile” and “public transit”);
ii)  separable cost functions for automobile mode ( 12-59);
iii)  non-negative cost functions for automobile mode ( 12-63);
iv)  increasing cost functions for automobile mode ( 12-64);
v)  public transit arc costs are fixed and exogenous;
vi)  TD component is a separable demand function in the form of a spatial interaction

(“gravity”) type function with an exponential cost function ( 14-13);
vii)  MS component is a binomial logit model ( 14-14).

8.2.1.3.2 Model structure
Florian and Nguyen (1978) combine the UO-S NA model with a combined entropy-maximizing
MS/TD component (see Ortδzar and Willumsen 1990).  The MS/TD component combines a
binomial logit model (MS) with a doubly constrained spatial interaction model (TD).  The two
models share the same parameter to control the cost function effect in the spatial interaction
model as well as the modal split dispersion.

The objective function in the Florian and Nguyen (1978) consists of three components (
14-15): i) an entropy component that determines TD and MS for the automobile mode; ii) a
modified entropy component that determined TD and MS for the public transit mode; and, iii)
the standard UO-S NA cost component.  The modification of the public transit entropy
component accounts for the fixed travel costs assumed for that mode.  Components i) and ii)
together comprise the combined TD/MS for both modes.  The decisions variables to be
determined when minimizing this objective function include: i) the aggregate travel demand for
the automobile mode between each O-D pair; ii) the aggregate travel demand for the public
transit mode between each O-D pair; iii) the route flows for the automobile mode; and, iv) the
arc flows for the public transit mode.

Constraints on the Florian and Nguyen (1978) TD/MS/NA model comprise the
standard aggregate travel demand constraints, albeit modified to account for the particulars of
their “two modes with fixed costs for one mode” model.  These constraints include: i) flows for
both modes leaving a destination must sum to the known (exogenous) total outflow from that
destination ( 14-16); ii) flows for both modes entering a destination must sum to the known
(exogenous) total inflow to that destination ( 14-17); iii) route flows for the automobile mode
between an O-D pair must sum to the aggregate automobile travel demand for that O-D pair (
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14-18); iv) the total flow on an arc is equal to the automobile flows on routes that use that arc
plus the public transit flow contribution to that arc (this latter quantity may be zero if routes are
separated)  ( 14-19), and; v) aggregate travel demands and route flows for both modes must be
non-negative ( 14-20), ( 14-21).

The Florian and Nguyen (1978) model offers some practical advantages with respect to
parameter estimation and computational tractability.  However, these advantages require some
theoretical costs, particularly with respect to assumptions regarding mode behavior and modal
interactions.  First, note that the model only allows two modes; this can be a drawback when
analyzing travel demand in large urban areas with multiple modes. Second, note that travel costs
(including travel time) for public transit are fixed, meaning that these costs are not affected by
congestion.  Thus, the model assumes that public transit travel times remain constant even when
the network is highly congested.  This is not a problem if the public transit mode is separate
from the automobile network (e.g., subways) but can be a problem when public transit shares
the automobile network.  This problem is mitigated to some degree if the public transit schedules
are accurate reflections of actual travel times, although these schedules may become less
accurate when forecasting more congested conditions in the future.  Also note that although
public transit is not affected by congestion, public transit can affect automobile congestion.  The
total flow on an arc is comprised of the automobile flow plus any contribution made by public
transit; this can be modified by flow equivalency factors ( 14-19).

8.2.1.3.3 Data requirements and parameter estimation
In addition to the flow cost function estimation issues discussed in conjunction with UO-S-
based NA, the Florian and Nguyen (1978) model requires the estimation of a single parameter.
This parameter controls both the cost function effect in the TD component as well as choice
dispersion in the MS component.  While convenient for estimation purposes, this requires a
single parameter to serve a “double role” and introduces error into both components (see
Ortδzar and Willumsen 1990).  However, Florian and Nguyen (1978) also discuss the
possibility of using two mode-specific parameters.  This reduces the harsh informational
requirements imposed on a single parameter to some degree, although each parameter is still
required to control TD and MS effects for that mode.

Florian and Nguyen (1978) provide explicit discussion of parameter calibration for their
model.  They assume that an O-D flow matrix is available from survey or secondary sources;
this provides the total outflows from origins and inflows to destinations.  Their procedure
requires first performing a UO-S NA.  This assignment provides estimates of the O-D minimum
travel cost values (i.e., ( 12-18)) for the automobile mode.  A simple shortest path calculation
within the public transit network provides the corresponding values for that mode.  Then, using
the entropy-maximizing principles developed by Wilson (1967, 1974), the parameter can be
calculated by attempting to get the predicted weighted mean trip length to match the observed
weighted mean trip length as closely as possible.  Again, the literature on spatial interaction
model calibration (e.g., Fotheringham and O’Kelly 1989) provides guidance.



34

8.2.1.3.4  Solution procedure
Florian and Nguyen (1978) formulate a very efficient solution procedure for their model.
Similar to Evans (1976) partial linearization technique, their procedure is a modification of the
convex combinations method.  Again, the main modification concerns the direction-finding step.

The Florian and Nguyen (1978) reformulates the direction-finding step as a modified
Hitchcock transportation problem, a special case linear programming (LP) problem that
distributes flows between O-D pairs based on fixed arc costs.  The modified Hitchcock LP
determines an auxiliary solution in terms of the mode-specific O-D flows.  After solving the LP,
auxiliary link flows are calculated based on assigning the automobile O-D flow along the
previously calculated shortest path.  If the auxiliary solution has not converged with the current
solution, an optimal step-size calculation occurs and the flow is adjusted for the next iteration.

The Florian and Nguyen (1978) algorithm still requires computing the shortest path trees
from an origin to all destinations.  This determines the shortest path cost for the automobile
mode from the origin to each destination based on the current iteration’s flow costs.  These
costs are used to initialize some of the auxiliary O-D flow variables for input into the modified
Hitchcock LP. This initialization allows conversion of a two-mode version of the Hitchcock LP
to an equivalent one-mode problem.  This results in substantial computational savings in an
already efficient LP problem.  Nevertheless, the algorithm’s computational effort is dominated
by the shortest path calculations so the major question concerns the number of iterations
required for convergence.  Neither computational nor analytical results regarding this issue are
provided by the authors.

8.2.1.4 TG/TD/MS/NA - STEM (Safwat and Magnanti 1988)

8.2.1.4.1 Assumptions
i)  a separate subnetwork represents each transportation mode in the study area ( 14-

22);
ii)  separable cost functions ( 12-59);
iii)  non-negative cost functions ( 12-63);
iv)  increasing cost functions ( 12-64);
v)  TD component is a separable demand function ( 12-61) in the format of a logit

model whose utility function consists of the minimum travel cost between the O-D
pair and a non-transportation-related destination attractiveness measure ( 14-23);

vi)  TG is a linear function of each origin’s accessibility to destinations and other, non-
transportation relative “propulsiveness” factors ( 14-24).
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8.2.1.4.2 Model structure
The simultaneous transportation equilibrium model (STEM) encompasses all four components
of a travel demand analysis (Safwat 1987a; Safwat 1987b; Safwat and Magnanti 1987; Safwat
and Walton 1988).  The STEM objective function combines the UO-S NA component with
two entropy components, specifically a TD and TG component.  STEM incorporates MS by
assuming that separate subnetworks represent each mode in the study area.  Therefore, the
UO-S paths though the overall multimodal network are simultaneous MS/NA for travelers.  The
disadvantage of this approach is that STEM represents modal choice as a deterministic process;
this conflicts with STEM’s representation of the TG and TD decisions as stochastic (see
below).  An advantage of this approach is it can accommodate mixed-mode trips, e.g., “park
and ride” transit situations.

STEM formulates the TG and TD components through a random utility decision
process at the individual traveler level.  The observed utility component consists of two
variables: i) the minimum average travel cost between the O-D pair ( 12-18); and, ii) a
composite variable reflecting the non-transportation-related attractiveness of that destination (
14-27). The destination attractiveness composite variable is exogenous; this can be the result of
an external, separate model (e.g., a regression analysis of inflows against variables such as the
amount of retail or office space).  The travel cost variable has an associated negative parameter
to reflect the disutility of travel. The unobserved or random utility component is assumed to have
a “type I extreme value distribution,” in other words, the typical error assumption used to derive
a logit choice model.  Some additional comments regarding this assumption are below.

The TG component generates flow from origins based on two factors: i) a composite
variable that takes into account non-transportation-related factors on origin outflows ( 14-26);
and, ii) the accessibility provided to that origin by the transportation system ( 14-25).  Similar to
the destination attractiveness composite variable, the origin composite variable is exogenous and
can result from an external model (e.g., a regression model of the observed trips against
residential population density in the particular origin).  The second TG component measures the
“accessibility” as the expected maximum utility of that origin. The “expected maximum utility”
measures the benefit of travel from the origin assuming random utility-maximizing decisions.  The
accessibility variable can assume any positive or negative value; however, the STEM equivalent
optimization program includes a constraint that requires this variable to assume non-negative
values ( 14-32) since negative accessibility (and negative origin outflows) are nonsensical.  The
first component of the STEM equivalent optimization program’s objective function ( 14-28)
reflects the TG theoretical basis at the aggregate level.

The TD component uses the utility function to distribute flows generated from an origin
among the destinations.  Logit model-generated destination choice probabilities are multiplied by
the number of travelers leaving each origin to estimate the flow from the origin to each
destination ( 14-23).  The second component of the STEM objective function generates
entropy-maximizing O-D flow estimates consistent with the logit TD model.
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The logit-based foundation of the TG and TD STEM components has both strengths
and weaknesses.  A strong aspect of the logit foundation is its robustness and tractability.  With
respect to robustness, Safwat and Magnanti (1988) demonstrate that STEM can approximate
any doubly constrained spatial interaction model with fixed and known origin outflows and
destination inflows. This occurs by defining the origin propulsivesness variable ( 14-26) and the
destination attractiveness variable ( 14-27) as functions of the known outflows and inflows
(respectively) and by restricting certain STEM parameter values (see Safwat and Magnanti
1988, Appendix B).  Thus, STEM can accommodate a wide range of data for defining factors
that affect TG and TD.  This can allow the model to adapt to changes in available data and
relevant policy variables.  With respect to tractability, the logit choice model only requires very
basic calculations and therefore can be applied to very large choice problems without undue
computational burden.

The major weakness of STEM’s logit foundation are theoretical problems related to the
Independence from Irrelevant Alternatives (IIA) property (see Wrigley 1985).  This
property implies that the ratio of choice probabilities for any two alternatives should not depend
on any other alternatives available to the decision maker.   The IIA property means that the logit
TD model is misspecified since it cannot account for the spatial context of the destinations.  This
is due to the logit assumption that choice errors among alternatives are independent (Wrigley
1985).

A simple example of the IIA property follows.  Assume a decision maker is faced with
two alternatives.  If a third alternative is added to the choice set, then the ratio of logit-based
choice probabilities between the original two alternatives will remain the same (although the
absolute choice probabilities for both will decrease).  Intuitively, this means that the third
alternative will draw patronage equally from both of the original alternatives.  This property is
problematic when alternatives are related, that is, they share some attributes in common.  For
example, if the original two alternatives are a “central city” and a “suburban” shopping
destination and a new “suburban” destination is added, we would expect the new alternative to
draw proportionately more from the original “suburban” alternative than from the “central city”
destination due to their shared attributes (Wrigley 1985).  Fotheringham (1986) discusses a
more general, spatial effect: individuals use a hierarchical information-processing heuristic that
clusters proximal destinations.   A logit-based TD component cannot capture these effects.

8.2.1.4.3 Data requirements and parameter estimation
In addition to the transportation network data requirements inherent in estimating UO-S
equilibrium, STEM requires information on origin propulsiveness and destination attractiveness
factors.  As noted above, STEM is extremely flexible in this respect.  The composite variables
associated with the origin and destinations can be the result of independent, external models that
relate factors such as (say) land use, population density, office or sales square footage to origin
outflows and destination inflows.  This allows STEM to be linked to land use and population
forecasts to predict impacts on traffic congestion, modal split and transportation system
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characteristics.  In addition, as noted above STEM can also accommodate known origin
outflow and destination inflow information.

STEM contains two parameters that require estimation (in addition to the link
performance function and value-of-time parameters associated with the transportation network).
These are: i) an accessibility parameter that relates transportation system performance to the
number of trips generated from origins; ii) a travel cost disutility parameter that measures the
sensitivity of travel utility between O-D pairs to their travel costs.  Safwat and Magnanti (1988)
do not develop a statistical distribution theory for STEM that would allow efficient simultaneous
estimation of both parameters.  However, an estimation procedure could estimate each
parameter independently.  Standard procedures for estimating linear utility functions within logit
models can be employed to estimate the travel cost disutility parameter (see Wrigley 1985); this
requires estimates of minimum travel costs between O-D pairs as well as an observed O-D flow
matrix.  Estimating the accessibility parameter requires observations of origin outflows relative to
minimum travel costs from that origin.  Following the suggestion of Florian and Nyguen (1978),
the minimum travel costs for both estimation tasks could be established by conducting a UO-S
NA using the observed O-D flows.

8.2.1.4.4 Solution procedure
Safwat and Walton (1988) discuss two solution procedures for the STEM.  The first
procedure, the shortest path to most needy destination (SPND) algorithm, is an extension of
the convex combinations approach.  Like convex combinations, SPND determines a feasible
direction at each iteration through a local linearization of the objective function.  The logit
distribution of trips (LDT) algorithm is an extension of the Evans (1976) partial linearization
technqiue.  Similar to the Evans (1976) algorithm, LDT uses a partial linearized objective
function to update O-D flows in a more dispersed manner than the fully linearization SPND
approach; consequently, its convergence is faster.

The LDT algorithm is very similar structurally to the Evans (1976) partial linearization
algorithm.  The algorithm first updates link costs and then calculates the shortest path tree from
each origin to all destinations.  Based on the shortest paths costs between O-D pairs, the
algorithm allocates flows according to the logit TD function.  This continues until solution
convergence

Computational experience with the LDT algorithm indicates that it can be used to solve
combined NA/MS/TD/TG demands on large (i.e., urban-scale) networks in a reasonable
amount of time.  Safwat and Walton (1988) report an application of the SPND and LDT
algorithms to the Austin, Texas transportation network (3555 links, 2137 nodes, 598 traffic
analysis zones and 271,625 O-D pairs).  As expected, the LDT algorithm converged much
quicker than SPND.  Total CPU time (including generating an initial solution) was 4,734
seconds (79 minutes) on an IBM 4381 mainframe.  This can be improved by a more
contemporary computational platform (including current high-end desktop platforms).
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8.2.2 UO-G-based approaches

8.2.2.1 T2-NA (Dial 1995b, 1996)

8.2.2.1.1 Assumptions
i)  one mode;
ii)  separable and linear cost functions ( 14-35) with the following components:

a)  a flow-related, deterministic component ( 12-40);
b)  a flow-related, stochastically-weighted component ( 12-41);
c)  a stochastic weight capturing varying reactions among travelers to the

stochastically-weighted component ( 12-42).  This weight has a fixed, O-D
specific probability distribution ( 12-43).

iii) O-D flows fixed and exogenous.

8.2.2.1.2 Model structure
Many network equilibrium models include an arc generalized cost (GC) function such as ( 7-1)
to capture the effects of travel time and out-of-pocket expense on route and mode choice.
These functions equate time and money through a scalar value-of-time (VOT) parameter
estimated from survey data.  However, a single summary value is a poor reflection of a complex
reality in which VOTs vary among individual travelers.  A large amount of information is lost by
using a single VOT parameter: theoretically, the VOT should be a random or stochastic
variable to fit better variations in the population.  Ben-Akiva, Bolduc and Bradley (1993)
illustrate this information loss: a logit choice model’s goodness-of-fit increased substantially with
a stochastic VOT parameter relative to the traditional scalar parameter.

The observations regarding varying tradeoffs between travel time and out-of-pocket
expense can be applied more generally.  For example, travelers can have different information
regarding congestion-induced delay times: travelers may be perfectly informed or may guess
optimistically or pessimistically about congestion effects on routes.  This involves varying
tradeoffs between “known” free-flow arc times versus “unknown” delay effects.  Similarly,
travelers may have different risk attitudes when considering variability in travel times: this
involves varying tradeoffs between average arc travel times and their variances (Dial 1995b).
Both cases require a stochastic parameter in the arc GC function to adequately capture varying
tradeoffs in the traveler population.

Dial (1995b, 1996) recently formulated the formal conditions and computational
procedures for network equilibrium when arc GC functions have stochastic parameters.  The
arc GC functions contain two components, namely, a deterministic disutility (d-disutility) and a
stochastic disutility (s-disutility) with a stochastic weight (s-weight).  These components must
combine in an additive manner.  Given these arc cost functions, the resultant equilibrium
conditions are a straightforward extension of the UO-S conditions:
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(UO-T2) Given a linear GC cost function with a stochastic weight or “s-
weight,” at equilibrium no travelers with his or her particular s-weight has
another path with a smaller GC.

This extension mirrors Smith’s (1979) extension of UO-S to the UO-G conditions that allow
variety in traveler behavior while still requiring a stable, minimal cost pattern in the aggregate.

Under the UO-T2 conditions, the cost function must be minimal for every traveler
given their particular s-weight (e.g., VOT).  At first glance, this problem appears intractable.
However, since the cost function ( 14-35) is linear only a subset of available paths between any
O-D pair will minimize GC for any VOT value.  This reduced set makes the UO-T2 equilibrium
problem tractable.  Similar to linear programming, the subset of paths that will minimize ( 14-35)
for any s-weight are a small set of extreme points in cost-time space.  Connecting these
extreme points forms an efficient frontier (EF) that facilities calculation of path choice
probabilities and therefore the equilibrium network flow loading.

Figure 8-2 provides an example of the EF and generalized cost equation in cost-time
space.  A given monetary cost and travel time characterizes each path between an O-D pair
and hence provides a “location” in cost-time.  Only paths that comprise the lower “boundary”
or EF are rational since paths above that boundary are inferior with respect to cost, time or
both.  The EF not only limits the number of network paths considered, but also simplifies the
path choice probability calculations.  Note that a particular s-weight determines the slope of  (
14-35) and therefore which path along the EF is optimal for that traveler (i.e., the lowest tangent
between  ( 14-35) and the EF).  Therefore, the probability that a traveler will use a particular
path is the probability that their VOT slope will make that path optimal.  Similar to linear
programming, we can calculate that probability for a given path by only considering its neighbors
on the EF.  We can do this in turn for each EF path to determine the proportional loading of
travelers given the assumed or estimated VOT distribution.

Similar to UO-G, the formal UO-T2 conditions are also in the format of a variational
inequality problem ( 14-36) - ( 14-37).  This states that a flow pattern is UO-T2 if any other
flow pattern would result in higher total costs, given each travelers’ s-weight.

Dial (1995a) also developed a variation on T2-NA, namely, T2-tolls.  T2-tolls defines
the arc cost function ( 14-35) in terms of a deterministic time component and a stochastically-
weighted monetary cost component.  Given a set of O-D specific VOT PDFs, T2-tolls
determines the toll structure for arcs that results in a SO equilibrium.  As noted above in the
discussion on network equilibrium theory, a SO equilibrium is ideal since it minimizes cost for
the entire traveler population as a whole.  However, it is difficult to achieve in practice since it
requires travelers to consider their marginal impacts on congestion.  The T2-tolls procedure
determines a pricing system that determines, based on each traveler’s VOT, the marginal social
costs of congestion.  When these are charged as link-based tolls, the resultant traffic flow is a
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SO equilibrium.  Since solving for this equilibrium toll structure is very efficient (see below), the
T2-tolls procedure could be a very practical and effective congestion pricing tool.

Figure 8-2: Example T2 efficient frontier
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8.2.2.1.3 Data requirements and parameter estimation
In addition to estimating the parameters of the link general cost and performance function, a
major task required is estimating the s-weight probability density function (PDF).  This PDF can
be in any continuous, discrete or mixed format, providing great flexibility.  Nevertheless, the
PDF must be estimated from empirical data on traveler’s route choices.

Although Dial does not develop an estimation procedure for the s-weight PDF, he
provides some guidelines for this task.  Dial (1996) suggests that used routes could be paired
with their empirical use probability (i.e., the proportion of travelers using route x divided by the
total number of sampled travelers) and fit a cumulative density function using special statistical
methods (see, e.g., Silverman 1986).  As noted above, Ben-Akiva, Bolduc and Bardley (1993)
have recently estimated a stochastic VOT parameter in a logit mode choice model.  However,
their estimation procedure assumes a lognormal distribution for the VOT rather than the general
distributions allowed by T2.

8.2.2.1.4 Solution procedure
A T2-reduced simplicial decomposition (T2-RSD) algorithm solves the variational inequality
problem ( 14-36) - ( 14-37) (Dial 1995b).  T2-RSD is based on the RSD algorithm originally
proposed by Lawphongpanich and Hearn (1984). In turn, RSD is based on the simplicial
decomposition (SD) procedures developed by Von Hohenbalken (1977).  (Very broadly,
“simplicial” is a technical term referring to constructing entities using the simplest entity
(“simplex”) in a given mathematical space; see Von Hohenbalken (1977) for a more technical
definition.)

SD decomposes the original optimization problem into two parts: i) a main or master
problem; and, ii) a minor or subproblem. The current solution of the master problem defines
the minor problem objective function.  In turn, the minor problem’s current solution is fed to the
master problem to redefine its objective function.  These are solved in sequence and repeatedly
until convergence.  In the RSD procedure of Lawphongpanich and Hearn (1984), the master
problem is the variational inequality problem of Smith (1979) while the minor problem generates
minimum cost path trees (i.e., the shortest paths from each origin to all destinations) based on
current flow levels.  As Lawphongpanich and Hearn (1984) note, the convex combinations
algorithm is a special case of the more general RSD algorithm.

T2-RSD decomposes ( 14-36) - ( 14-37) into a flow assignment subproblem and a
master problem that updates the current solution by finding the optimal combination of
subproblem solutions.  The subproblem loads flows based on current cost levels and the s-
weight intervals of the efficient frontier.  Although repeatedly building shortest path trees based
on different s-weights could potentially involve a high computational burden, the tree building
algorithm takes advantage of the minor differences between shortest path trees based on
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adjacent s-weight intervals.  Thus, each successive tree is a modification of the previous tree
rather than a new tree built from scratch.  This makes the subproblem solution very efficient:
Dial (1995b) reports solving 150 minimum path trees (600,000 minimum paths) for a 4,000
node/15,000 arc network per second.  A linear programming (LP) embedded within a linear
approximation solves the master problem; this takes advantage of extremely efficient LP solution
procedures.  Dial (1995b) also develops a procedure for handling memory management and
overflow problems in T2-RSD.  The efficient solution algorithms and memory management
procedures suggests that T2 NA could be a practical analytical tool for urban-scale travel
demand analysis.

8.2.2.2 Combined NA/MS (Dafermos 1980)

8.2.2.3 Assumptions
i)  one or more modes;
ii)  non-separable cost functions ( 12-60);
iii)  the major influence on a mode’s arc flow cost is that mode’s flow within that arc (

14-41);

8.2.2.4 Model structure
Dafermos (1980) presents a very general NA/MS model that relaxes the restrictive non-
separable arc cost function inherent in most network equilibrium-based travel demand models.
Recall that these cost functions assume that a mode’s link flow cost is only influenced by that
mode’s flow within that link.  This assumption does not recognize interactions among modes
within a link nor the influence of flows within other links (e.g., cross-traffic at intersection or
two-way traffic on the same street).  This unrealistic assumption is necessary for model
tractability within the UO-S framework.

Working within the UO-G framework,  Dafermos (1980) relaxes this assumption,
albeit not completely.  Note that assumption iii) above requires a mode’s flow within a link to be
the dominant component that determines that mode’s arc cost.  This is reasonable from the
perspective of cross-link influences; i.e., we would expect cross-traffic at intersections and
traffic in the opposite direction to have less influence on congestion within a link than the traffic
in that link.  However, this assumption is less tenable with respect to inter-modal interactions
within the same link.  Nevertheless, even though inter-modal interactions within a link must be
subdued this is an improvement over not capturing these interactions at all.

Dafermos (1980) states the NA/MS model as a variational inequality (VI) problem (
14-42 ).  This  parallels the theoretical development by Smith (1979), although Dafermos
(1980) states and analyzes the model at the more convenient link flow form instead of the
equivalent path flow form.  The VI requires the UO-G equilibrium to be the lowest overall arc
flow cost of any other feasible arc flow pattern.
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Assumptions regarding inter-link and inter-modal interactions are captured through a
linear link flow cost function ( 14-38).  This function consists of two components.  The first
component is the set (matrix) of all arc flows in the network pre-multiplied by a matrix reflecting
the inter-modal and inter-link interactions. The second component consists of static or “base”
link costs.  As noted above, the flow interaction matrix must be structured so that modal flow on
an arc dominates that mode’s cost for that link.  This ensures that the cost functions behave
correctly and a unique solution exists ( 14-41).

8.2.2.5 Data requirements and parameter estimation
The major additional data requirement and estimation task in the Dafermos (1980) MS/NA
model is estimating the inter-link and inter-modal interaction matrix in the link flow cost function
( 14-38).  Primary data required to estimate inter-link interactions are detailed, time-stamped
flow and travel time observations across the network (or a sampling of key links).  Estimating
interactions among different modes is more difficult; this requires detailed observations of modal
flow levels and link travel times.  Given a lack of primary data, analysts can make assumptions
regarding these interactions; this approach is often used to derive “flow equivalency factors” to
capture modal interactions.

8.2.2.5.1 Solution strategy
Dafermos (1980) presents an algorithm to solve the VI problem ( 14-42 ) given the special
linear arc flow cost functions ( 14-38).   The algorithm as presented is for a single mode
problem with link interactions; extending the algorithm for multiple modes is a straightforward
transformation using earlier work on multiclass transportation networks by Dafermos (1972).

The algorithm requires repeated solution of a UO-S NA problem given a special
transformation of the link flow cost function.  The link flow cost function includes a parameter
that strongly influences the convergence speed of the algorithm.  Determining the proper value of
this parameter requires computing the eigenvalues (characteristic roots) of two large matrices
(specifically, ( 14-41) and a function of ( 14-41) and the mode/link interaction matrix).  This can
be very complex, particularly for the large matrixes implied by a large-scale application  (see
Press et al.  1992, 456-463 for a discussion).  However, Dafermos (1980) notes that the
parameter can be selected using a trial and error strategy and makes some suggestions about
interval bounds for the parameter.

The applicability of the Dafermos (1980) to large-scale networks is unclear.  Both the
complexity of certain operations (particularly, calculating eigenvalues) and the large number of
iterations potentially required for convergence imply that the Dafermos (1980) model may be
limited to sketch planning networks.  However, this report reviewed this  model for
completeness as well as the possibility that a more efficient algorithm could be developed using
VI tools.  Continued research is required.
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8.2.2.6 Combined NA/MS/TD/TG (Dafermos 1982)

8.2.2.6.1 Assumptions
i)  one or more modes;

ii)  non-separable cost functions ( 12-60);

iii)  the major influence on a mode’s arc flow cost is that mode’s flow within that arc (
14-41);

iv)  non-separable demand functions ( 12-62);

v)  the major influence on the modal flow between an O-D pair is that mode’s  travel
costs for that O-D pair ( 14-46).

8.2.2.7 Model structure
The Dafermos (1982) NA/MS/TD/TG model is a direct extension of the Dafermos (1980)
UO-G-based NA/MS model.  In this case, the model treats the travel demand between an O-
D pair as elastic instead of fixed as in Dafermos (1980).  This accounts for the higher-level
TD/TG demands.

The model is stated in the form of a VI ( 14-47).  The VI consists of two components:
i) the link flow cost functions; and, ii) a function that measures the travel disutility.  Formally,
travel disutility is the inverse function of the travel demand function ( 12-24).  This measures the
generalized cost (disutility) associated with each travel demand level.  The VI objective function
requires the combined link flow costs and travel disutilities to be the aggregate minimal cost
pattern among all feasible patterns.

The VI objective function ( 14-47) corresponds to a generalization of UO-S market
equilibrium conditions at the individual level.  These conditions dictate that any route between an
O-D pair exhibiting positive flow has a travel disutility equal to the route’s flow cost.  If a
route’s flow cost is greater than the travel disutility than the flow on that route must be equal to
zero ( 14-48).  Any travel demand pattern that satisfies this condition can be stated in a form
similar to the VI objective function ( 14-49).  Aggregating this statement allows the relaxed
behavioral conditions pioneered by Smith (1979): only the aggregate pattern is required to be
minimal rather than each individual trip.

The combined NA/MS/TD/TG model contains the linear link flow cost function from
the Dafermos (1980) NA/MS model.  The travel disutility functional form is analogous: it
contains a matrix capturing the travel disutility interactions among O-D pairs.  This matrix must
be structured so that the influence of a mode’s flow between an O-D pair dominates that
mode’s travel disutility for that pair.  This ensures that the travel disutility functions behave
correctly and a unique solution exists ( 14-46).
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8.2.2.7.1 Data requirements and parameter estimation
As with the UO-G-based NA/MS model, the combined NA/MS/TD/TG model requires
estimation of the mode/link interaction matrix.  In addition, the travel disutility matrix must be
estimated. This requires estimation of non-separable demand functions, i.e., demand functions in
which the flow between an O-D pair depends on the set of minimum costs across all O-D pairs
(although, as noted above, the flow-related cost for the given O-D pair is the assumed to be
dominant).  The spatial interaction literature does not provide guidance for estimating non-
separable demand functions.  However, one could access spatial interaction estimation
techniques by structuring the travel disutility matrix so that off-diagonal elements are zero, i.e.,
consistent with separable demand functions.

8.2.2.7.2 Solution strategy
The combined NA/MS/TD/TG model’s solution algorithm is a direct extension of the solution
strategy for the Dafermos (1980) NA/MS model.  The algorithm involves repeated solution of a
UO-S NA assignment with elastic demand.  The algorithm requires transformations of the link
flow cost and travel disutility functions.  These transformations include parameters that influence
strongly the convergence speed of the algorithm.  These parameters must be estimated from the
eigenvalues of the mode/link interaction and the travel disutility interaction matrices.  This can be
difficult for large-scale travel demand analysis.  A trial and error search strategy to find these
parameters is also possible, and Dafermos (1982) provides guidelines on the intervals for these
parameters.

Similar to the UO-G-based NA/MS model, the efficiency of this algorithm for large-
scale travel demand analysis is unclear.  However, it is worth discussing this model due to its
generality.  Continued research is required to test the algorithm for a large-scale application and
perhaps improve the solution algorithm speed using related solution techniques for VI problems.

8.2.3 DUO-based approaches

8.2.3.1 DUO NA (Janson 1991b)

8.2.3.1.1 Assumptions
i)  one mode;

ii)  separable cost functions ( 12-59);

iii)  non-negative cost functions ( 12-63);

iv)  increasing cost functions ( 12-64);

v)  O-D flows fixed and exogenous;

vi)  the study time period divided into discrete time intervals of equivalent duration ( 12-
31), ( 12-32).
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8.2.3.1.2 Model structure
Janson’s (1991a, 1991b) DUO NA model is a direct extension of the UO-S NA model (Sheffi
1985).  The objective function extends the minimization of the cumulative arc cost function
across all network arcs to minimization of these costs across all discrete time periods ( 14-50).
Thus, we essentially extend the UO-S equivalent optimization problem across multiple, discrete
time periods and require minimization of the arc cost function across these time intervals.

The DUO NA (Janson 1991b) contains both static and dynamic constraints.  The static
constraints are equivalent to the UO-S constraints with the added dimension of the discrete time
intervals.  Specifically, we require: i) flows on an arc during a given time period to be equal to
the summed flows that departed during any time period on any path that uses that arc during the
given time period ( 14-51); ii) the summed flow that departs during a given time period must
sum to the known flow departure total for that time period ( 14-52); and, iii) route flows during
any time period must be non-negative ( 14-53).  The objective function plus these constraints is
exactly equivalent to the UO-S NA equivalent optimization problem when there is only one time
period.

A temporal path-arc incidence variable maintains correspondence between arcs and
paths during each time interval for flows that depart during the same time interval ( 12-37).
Note that this is a temporal extension of the static arc-path incidence variable  ( 12-9).  A key
difference is that the static incidence variable is an exogenous constant while temporal arc-path
incidence is a decision variable solved within the problem.  In DUO, the arc composition of
paths for flows that departed during a given time period cannot be predetermined since the time
interval of arc use is affected by travel costs which in turn are affected by flow loadings (Janson
1991b).

The endogenous nature of arc-path incidence in DUO requires the problem to have
non-linear dynamic flow constraints to ensure flow continuity.  First, we require flows to only
use each arc on a given path only once during each time interval ( 14-54).  Second, we require
each path to use its arcs in a temporally continuous and logical manner relative to the travel
times to each arc’s nodes.  This is accomplished by first measuring the total travel time on a path
from the origin to a given node for trips departing in a given time interval ( 14-55).  Then, we
force flow to use the arcs in a path in a temporally consistent manner.   Flow can only use an arc
during the interval that it reaches the from-node of that arc according to the cumulative travel
time to that from-node.  If the cumulative travel time to the from-node is greater than or less
than the cumulative “clock time” (measured by the number of elapsed intervals times the
duration of each interval), then the temporal arc-path incidence variable is forced to zero and
the path cannot use that arc (( 14-56) and ( 14-57), respectively).

Janson and colleagues have developed several extensions of the basic DUO NA model.
Janson (1995) formulates a DUO NA model with known (fixed) arrival times in contrast to the
known departure times assumed in the original formulation.  Janson and Robles (1993)
developed a DUO NA model that includes departure or arrival time choices; thus, travelers
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choose a departure or arrival time simultaneously with their route choices.  This can allow
modeling of travel timing decisions.  Janson and Robles (1995) develop a “quasi-continuous”
version of the model by allowing fractional (as opposed to integer) flows. This allows better
representation of dynamic congestion effects such as spillback queuing effects downstream from
incidents such as accidents.

8.2.3.1.3 Data requirements and parameter estimation
The major data requirement for the Janson’s (1991b) DUO model is a time-specific O-D flow
matrix.  Ideally, this requires O-D flow data “tagged” with the time of day when each trip
occurred.  These data can be aggregated to the discrete time intervals of the DUO model.
Since the DUO model specifies a dynamic equilibrium for flows departing within the same time
interval, the critical “time stamp” is the departure time of each trip although the arrival times can
also be used for model validation.  In contrast, the alternative formulation in Janson (1991a)
requires “time stamps” corresponding to arrival times.

If a temporal O-D matrix cannot be obtained directly from primary data it must be
estimated.  Janson and Southworth (1992) discuss a method that uses the dynamic traffic
assignment procedure to estimate departure times from observed link traffic counts; these data
are often readily available.  Another, less sophisticated, option is to temporally disaggregate a
daily O-D flow matrix.  The simplest method is to divide the O-D matrix equally into the n daily
intervals implied by the specified time duration.  However, since O-D flows typically exhibit
morning and daily peaks rather than an even daily distribution this approach is crude.  Daily O-
D flows could be distributed over the time period of interest by using daily peak profile curves;
this would provide a more realistic estimate of the time-dependent O-D flows

An issue that must be addressed when implementing the DUO model are the
appropriate time interval duration.  Janson (1991b) suggests choosing an interval that is
approximately four to five times the mean link time impedance in the study area.  This minimizes
flow estimate variation between intervals.

8.2.3.1.4 Solution strategy
Two solution stratgies are available for the DUO NA.  Janson (1991b) formulates a heuristic
strategy, the dynamic traffic assignment (DTA) procedure, that generates “good” (near-
optimal) solutions with reasonable computational times.  Janson (1991a) develops an exact
(optimal) algorithm, the convergent dynamic algorithm (CDA).

DTA incrementally assigns the known flows departing during each interval to shortest
paths while anticipating future link volumes.  Note that in a static NA problem all flow
assignment occurs at the same “time.”  Therefore, the procedure can simply compute the
shortest paths from an origin to each destination based on the current levels of arc flows and
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costs (although these flows can be re-adjusted until convergence to equilibrium).  In the dynamic
realm, it is unknown how current and future arc volumes will be affected by assignments from
other origins.  Thus, after each assignment the DTA procedure must project current arc flow
assignments into future time intervals.  DTA projects future arc flows based on current arc flow
levels, ratios of future (not yet assigned) travel demands and flows assigned in previous intervals.
This assumes that reasonable estimates of future arc flows can be made by multiplying current
arc flows by factors that account for travel demand levels in future time intervals.  DTA uses
these projections only to calculate the shortest paths; these flows are only assigned during their
appropriate time intervals.

Projecting the current arc flows into future time intervals occurs through a weighted
combination of arc flows assigned thus far during the currently projected interval and the final
arc flows from the previously projected interval.  The weight given to the current interval’s flow
during an origin’s flow assignment is equal to the percent of total trip flows assigned to that
point: this ranges from 0% during the first origin’s flow assignment to 100% during the last
origin’s flow assignment.  Since these weights depend on the order in which an origin is
considered, origins are randomly selected in order to randomize the arc flow loadings.

The CDA strategy combines the convex combinations method with a linear
programming approach.  Convex combinations solves for a UO equilibrium with fixed node time
intervals.  This solution is then passed to a linear program to update node time intervals.  These
updated node time intervals are then passed back to the convex combinations routine for flow
updating.  This continues until convergence; this is measured based on the number of node time
intervals changed since the last iteration.

8.2.4 SUO-based Approaches

8.2.4.1 SUO NA (Fisk 1980)

8.2.4.1.1 Assumptions
i)  one mode;
ii)  separable cost functions ( 12-59);
iii)  non-negative cost functions ( 12-63);
iv)  increasing cost functions ( 12-64);
v)  O-D flows fixed and exogenous;
vi)  route costs are random variables consisting of an observable component and an

unobservable or random component whose expected value is zero ( 13-10), ( 13-
11).

8.2.4.1.2 Model structure
The SUO NA problem loads fixed O-D flows onto a network in a manner consistent with the
SUO equilibrium conditions ( 13-8) - ( 13-11).  As discussed above, the stochastic component
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attempts to reflect limited information and subjectiveness.  From a theoretical perspective, this is
an improvement from the UO conditions that assume perfect information and rationality on
behalf of travelers.

There are several formulations of the SUO NA.  These formulations differ mainly with
respect to the route choice probability calculations.  Generally, there are two major route
probability mechanisms.  Both fall within the realm of random utility theory, meaning that
travelers’ utility functions for route choice are assumed to have a measured and random
component.  A logit-based network loading routine is very tractable, but has some theoretical
problems.  First, the logit-based loading is insensitive to network topology; this results in too
much flow being allocated to overlapping routes.  This is due to the logit’s model IIA property:
the model assumes that choices are independent and do not share attributes.  A second problem
is the logit reliance on travel cost differences only.  This implies that the magnitude of the route
length is ignored, e.g., a five minute travel time difference has the same effect whether the route
lengths are ten versus fifteen minutes or 120 versus 125 minutes in length (see Sheffi (1985), pp.
302-305 for a clear illustration).  These properties weaken the behavioral foundation of the
logit-based flow pattern.  Despite these behavioral weaknesses, logit-based network loading is
popular due to the logit model’s tractability.

Probit-based network loading assumes a very general error structure, meaning that
route choice utilities can be correlated.  Probit-based network loading takes into account
network topology and route length magnitudes.  However, behavioral realism is gained at the
expense of more difficult model calculations.  A closed-form (analytical) solution does not exist
for the general probit model, meaning that calculations must often be obtained through Monte
Carlo simulation or other, computationally-intensive methods (Sheffi 1985).

Fisk’s (1980) SUO NA model uses a logit-based route choice mechanism.  SUO NA
adds an entropy-based route flow component to the UO NA objective function ( 14-58).  As
noted above, an aggregate-level entropy component is consistent with a random utility/spatial
interaction choice mechanism at the individual-traveler level (Fotheringham and O’Kelly 1989;
Oppenheim 1995).  The integration of the UO-S NA arc cost component and the route choice
entropy component in the Fisk (1980) objective function has some interesting properties.  A
parameter associated with the route choice entropy component measures travelers’ sensitivity to
route costs.  When this parameter tends to infinity, the route choice entropy component tends to
zero and a UO-S NA is obtained.  Thus, the UO-S NA model is a special case of the more
general SUO NA model.  Conversely, when the parameter tends to zero the entropy
component becomes dominant.  In this case, flows are evenly dispersed among routes, i.e.,
travelers do not consider costs when making route choices (Damberg, Lundgren and Patrikson
1996; Fisk 1980).  Fisk (1980) notes that the full IIA route choice properties only occur when
the parameter value is zero; the IIA properties weaken as the parameter becomes more
positive.
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For all positive values of the traveler cost sensitivity parameter, the SUO NA model will
generate a positive flow level for each network route regardless of its travel cost, although many
of these flow levels can be quite small.  Since the number of routes can be quite large, solution
algorithms must either define a set of plausible or efficient routes (see, e.g., Dial 1971) or must
work directly with arc flow levels rather than route flow levels (Damberg, Lundgren and
Patrikson 1996).

Constraints on the SUO NA problem correspond to standard flow consistency and
non-negativity conditions.  These include: i) the summed flow on routes between an O-D pair
must sum to the aggregate flow between that O-D pair ( 14-59); ii) the summed flows on all
routes that use a particular arc must sum to the total flow on that arc ( 14-60); and, iii) route
flows must be non-negative ( 14-61).

8.2.4.1.3 Data requirements and parameter estimation
In addition to calibrating link generalized cost and link performance functions, Fisk’s (1980)
model requires estimation of the traveler cost sensitivity parameter.  Since this parameter’s value
is uniquely determined by the optimal network flows, it can be calibrated from observed flow
levels in the network (Damberg, Lundgren and Patriksson 1996; Fisk 1980).  However, this
causes some difficulties since these flows are endogenous to the model (Anas 1988).

Huang (1995) developed a combined algorithm for solving and calibrating Fisk’s
(1980) model.  The combined algorithm starts with an arbitrary parameter value and solves for
the SUO flows based on that value.  The algorithm then compares the predicted total network
flow cost to an exogenously-determined observed value.  If the predicted and observed values
do not match, the algorithm increments the parameter value upward or downward (depending
on the comparison) and resolves for the new SUO flows.  The combined algorithm is
computationally-intense since it requires repeated solution for the SUO equilibrium flows.  This
can be mitigated to some degree by a good initial guess for the parameter value.  Also, since
lower values of the parameter require the enumeration of larger number of paths, it is more
efficient to start with a larger value for the parameter and allow the algorithm to work
“downward” to the correct value.

8.2.4.1.4 Solution procedure
Several solution strategies have been proposed for the SUO NA problem.  As a very general
solution strategy, the method of successive averages (MSA) can be used with any stochastic
network loading routine, i.e., logit or probit (Sheffi 1985; Sheffi and Powell 1982).  This
method is discussed in more detail below in the section on super and hypernetworks.
Discussion in this section is limited to solution algorithms specific to Fisk’s (1980) model.

Chen and Alfa (1991) develop two algorithms based on the convex combination
methods and Dial’s STOCH network flow loading algorithm (Dial 1971).  Since the algorithm
optimizes the step length during each iteration, the algorithms converge much quicker than
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MSA.  However, the Chen and Alfa (1991) algorithms may result in inconsistent flows and can
require balancing procedures to enforce consistency (Bell et al.1993).  Damberg, Lundgren and
Patriksson (1996) developed a heuristic solution strategy that provides solutions directly in
terms of path (as opposed to arc) flows.

An important task in operationalizing Fisk’s (1980) model is determining the subset of
paths between each O-D pair that should be considered when loading flows.  Since logit-based
network loading theoretically loads positive flow levels on every route between an O-D pair, we
must be careful in how we restrict the extremely large number of O-D routes to a more
manageable subset.  Fisk (1980) discusses two methods: i) shortest path assignment; and, ii)
Dial’s (1971) STOCH algorithm.  The former method loads flow onto the shortest path
identified during each iteration.  The latter method uses a logit function directly to load flows
onto the set of efficient paths during each iteration.  The “efficient paths” are those that only
include links that bring the traveler closer to the destination and farther from the origin (i.e., a
path is not efficient if it brings the traveler closer to origin during any step).  The path subset
selection definition can vary among SUO solution algorithms; these specifications trade-off
computational efficiency versus error introduced by not considering some paths between an O-
D pair.

Leurent (1995) recently refined both the Fisk (1980) minimization program as well as
Dial’s (1971) STOCH algorithm.  The improvement to the Fisk minimization program involves a
more sensitive convergence test.  The improvement to STOCH provides a more stable
definition of “efficient paths,” allowing path calculations to occur only once rather than during
each iteration.  Both refinements make the Fisk SUO model more competitive to deterministic
approaches with respect to computational effort.

8.2.4.2 NA/MS/TD/TG - Super- and hyper-networks (Sheffi and Daganzo 1980)

8.2.4.2.1 Assumptions

i)  an expanded network represents the transportation system ( 14-62);
ii)  the expanded nodes consist of basic nodes ( 12-48) representing the transportation

network (e.g., street intersections and public transit stops) and a set of virtual or
non-basic ( 12-49) nodes that represent TG and MS decisions ( 14-63);

iii)  the expanded network arcs consist of basic arcs ( 12-50) representing the
transportation network (e.g., street segments and public transit route segments) and
a set of  non-basic or entrance/egress arcs ( 12-51) that represent TG and MS
decisions ( 14-64);

iv)  flow costs are fixed for arcs in the entrance/egress network;
v)  separable cost functions ( 12-59)for arcs in the basic network;
vi)  non-negative cost functions ( 12-63) for arcs in the basic network;
vii)  increasing cost functions( 12-64) for arcs in the basic network.
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8.2.4.2.2 Model structure
The supernetwork approach (Sheffi 1985; Sheffi and Daganzo 1978, 1980) extends the classic
network equilibrium problem to encompass other travel decisions such as TG, TD and MS.
The fundamental idea is elegant: augment the “standard” transportation network with abstract
links and synthetic cost functions that represent other travel decisions.  Solving for an equilibrium
flow pattern for the extended network provides consistent demands across the travel
components represented.  Sheffi (1985) provides a rigorous treatment of this method, while
Slavin (1995) provides a more accessible review.

A supernetwork consists of a basic network and an extended or non-basic network
(see Sheffi 1985; Sheffi and Dagnazo 1978, 1980).  Figure 8-3 provides an example for
combined NA/MS.  In general, the basic network corresponds to a detailed, “physical”
network with deterministic flow-dependent cost functions, e.g., an urban street network.  The
flow pattern in this network represents a solution to the NA travel demands.  Conversely, the
non-basic network consists of “abstract” links with stochastic flow-independent cost functions
that reflect mode, destination or trip generation choices.  Consequently, the non-basic flow
pattern provides the TG, TD and/or MS travel demands.

The supernetwork equilibrium conditions correspond to a SUO equilibrium across the
augmented network.  Specifically, these conditions require: i) the total demand between an
“entrance” basic node (i.e., a basic node directly connected to one or more origins) and an
“egress” basic node (i.e., a basic node directly connected to one or more destinations) is equal
to the total aggregate demands between all O-D pairs connected to that basic node pair times
the probability of that node pair being used ( 14-65); ii)  the flow on all paths between a basic
network entrance/egress pair must sum to the total demand between that pair ( 14-66); iii)
positive flow levels only occur on routes that are tied for the minimum cost level between any
basic network entrance/egress node pair ( 14-67), ( 14-68); and, iv) all route flow levels must
be non-negative ( 14-69).  Note that any stochastic loading routine can be used to calculate the
usage probability for basic network entrance/egress node pairs.  “Supernetwork” refers to this
general case while “hypernetwork” refers to the particular case of a probit choice mechanism.

The distinction between deterministic, flow-dependent costs and stochastic, flow-
independent costs implies that, at equilibrium, the UO-S conditions hold for the basic network
while the SUO conditions hold for the expanded network.  Thus, the user equilibrium dimension
derives from the basic network while the stochastic dimension results from the non-basic
network.  The stochastic costs on the non-basic network links relates to random utility theory
and therefore is appropriate for modeling TG, TD and MS.  However, the deterministic
restriction on the basic network link costs is for computational tractability.  In particular, this
assumption allows changes in basic network flows to affect only the average cost between a
non-basic O-D pair.  This allows the choice probability for a non-basic link to depend only on
the minimum impedance rather than a complete enumeration of all basic network paths between
a non-basic node pair (Sheffi and Daganzo 1980).
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8.2.4.2.3 Data requirements and parameter estimation
Basic data requirements and parameter estimation tasks associated with the supernetwork
approach are estimating the parameters of the random utility-based demand functions for each
aggregate travel demand encompassed (i.e., MS, TD and/or TG).  Since the NA component is
deterministic, these estimation tasks are straightforward and do not have the difficulties
associated with the parameter estimation for SUO NA.  The basic task is to estimate the
parameters of the random utility functions.  This requires observations of individual-level travel
decisions and the hypothesized characteristics that influence these decisions.  Since the
supernetwork model is aggregate, these characteristics should be decision-specific (e.g.,
accessibility, level-of-service) rather than individual characteristics (e.g., household income).
Sheffi (1985) provides an accessible albeit brief review of estimation procedures; a more
detailed and technical discussion can be found in Ben-Akiva and Lerman (1985).

Figure 8-3: Example supernetwork for NA/MS

Automobile basic network

Transit basic network

Origin “Virtual” origin “Virtual” destination Destination

Non-basic network (mode choice)
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8.2.4.2.4 Solution procedure
Any SUO solution method can solve for this equilibrium over a supernetwork.  Sheffi and
Daganzo (1980) provide a method that is very similar to the UO-S convex combinations
algorithm.  Sheffi (1985) and Slavin (1995) discuss MSA as a good, general purpose solution
algorithm that can be applied with any stochastic network loading routine.

MSA is similar to the convex combinations method.  In this case, the step-size along the
feasible direction is not determined during each iteration.  Instead, a sequence of step-sizes are
predetermined before algorithm execution.  Many types of step-size rules are feasible; the only
requirements are that an infinite sum of the step-sizes and the square of the step-sizes is infinity
and less than infinity, respectively (i.e., the step-sizes should generally be positive but less than
one).  A simple step-size rule that meets this requirement is 1/n, where n is the iteration number.
The move direction is determined through a stochastic network loading model.  The
requirements on the move direction are also quite general: the move direction must be a descent
direction only on average  (Sheffi 1985).  This provides a great deal of flexibility for the network
loading routine (e.g., logit, probit).

MSA’s fixed step length means that the algorithm requires a large number of iterations
to converge (Chen and Alfa 1991; Huang 1995). Another MSA weaknesses is that its
convergence is not monotonic, i.e., the flow change does not necessarily become increasingly
smaller.  This relates to the randomness of the move direction and the fixed move size.  The
convergence criteria should therefore be based on flow characteristics over several previous
iterations rather than comparing the current flow with just the last iteration (Sheffi 1985).

8.2.5 Combined UO-S/SUO Approaches

8.2.5.1 TG/TD/MS/NA - Trip consumer approach (Oppenheim 1995)

8.2.5.1.1 Assumptions
i)  one or more modes;

ii)  non-negative cost functions ( 12-63);

iii)  strictly increasing cost functions ( 12-64);

iv)  separable cost functions ( 12-59) (although two-mode non-separable functions are
possible);

8.2.5.1.2 Model Structure
The trip consumer (TC) approach (Oppenheim 1995) formulates travel demands within classic



55

microeconomic consumer demand theory.  Oppenheim (1995) obtains consistency among
individual decisions and aggregate equilibrium conditions by linking the utility structures for
individual travelers to corresponding aggregate-level optimization problems.  Solving the
optimization problem generates the equilibrium, aggregate-level travel demands corresponding
to the postulated individual-level utilities.  In addition, several well-known and efficient solution
algorithms are available for solving the optimization problems.  The TC approach is extremely
broad and flexible; several established travel demand models can be derived as a special case
of this general (Sheffi 1985; Evans 1976; Safwat and Magnanti 1988).

The TC approach solves the travel demand problem by restating it as an aggregate-level
version of the classic consumer utility maximization problem in microeconomic theory ( 14-
75) - ( 14-77). In this problem the consumer attempts to choose a “bundle” of goods that
maximizes his or her benefit subject to a maximum expenditure limit (“budget”).  At a basic
level, we can view transportation services within this framework.  Similar to more traditional
“goods,” transportation services offer benefits (i.e., accessibility to destinations) but incur costs
(time, money) that travelers have varying willingness or ability to pay.  A traveler chooses the
type and levels of transportation services that maximizes his or her benefit subject their ability or
willingness to pay.  Stating the travel demand problem in this format requires: i) formulating an
individual-level utility structure that encompasses the relevant travel demand components; ii)
restating the individual-level choice utilities as aggregate-level utilities; and, ii) transforming the
choice-specific or indirect utilities to direct utilities that, when maximized, generates the
equilibrium travel demands.

In the general case, the TC approach specifies individual, choice-specific utilities within
the random utility framework.  As discussed previously in this report, each choice utility consists
of a measured and a unmeasured component.  The measured utility component can have
arbitrary length and form, providing a high degree of flexibility for incorporating relevant, policy-
related and behavioral factors.  In contrast with the standard logit error assumption, the TC
approach assumes that the that the stochastic components are independently and identically
Gumbel distributed.  This allows a tractable nested logit structure to represent interrelationships
among the four travel demand utilities.

The nested logit (NL) approach is a method for representing interrelationships among
choices in a random utility framework (see Wrigley 1985).  The NL model assembles individual
choice utilities into a composite utility structure by “nesting” expected utilities of related choices
within a choice’s utility function.  This nesting structure often represents a sequential decision
process, e.g., a NL model would reflect the temporal sequence of “Choice A then Choice B”
by nesting Choice B’s expected utility within the utility function of Choice A.  In this case,
Choice B’s utility is an expected utility since its benefit depends on its choice probability.
Another, equally valid, interpretation of the nesting structure are hypothesized
interrelationships among the travel demand components and the relative effects of the
unobserved utilities (see below).  This interpretation does not assume a temporal choice
sequence, although the mechanics are identical.
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 Appendix 14.5.1 provides the indirect and expected utilities corresponding to each
travel demand component.  The expected utilities provide the basis for utility nesting.  For
example, when modeling MS and deterministic NA, the analyst could hypothesize a nesting
structure of MS/UO-S-NA.  This would reflect the hypotheses that: i) route choices within a
particular mode are more similar than route choices between modes; and, ii) NA has a smaller
stochastic component than MS (i.e., the analyst is more certain about the NA utility function
specification than the MS specification).  In terms of the utility functions in Appendix 14.5.1, this
would require nesting ( 14-87) within ( 14-82).  Similarly, hypothesizing a TG/TD/MS/UO-S-
NA nested structure would require nesting ( 14-85) in ( 14-83), ( 14-83) in ( 14-81), and ( 14-
81) in ( 14-78).

The nested utility structures are used in the parameter estimation phase of the TC
approach.  The results of the parameter estimation phase may result in a modification of the
nesting structure.  After parameter estimation, a particular model within the TC framework can
be solved using the direct, aggregate-level utilities corresponding the indirect, individual-level
utility structure and the estimated parameters.  These direct, aggregate-level utilities are the same
regardless of the resulting nesting structure; the nesting structure influences the direct, aggregate-
level utilities only through the estimated parameter values.  More detailed discussion on
parameter estimation is provided below.

Utility theory dictates that if individual-level utility functions are in the Gorman form
they can be restated at the aggregate level by replacing individual-level variables with the
corresponding aggregate-level variables for a given cohort (e.g., an origin zone).  The Gorman
form requires the individual-level utility function to consist of two separable components,
specifically, an individual-specific component and a component that represents a common
response to costs given a specified budget level (Varian 1992).  These restrictions are mild for
travel demand utilities, particularly since the budget constraint can be dropped from the problem
(Oppenheim 1995).

Utility functions such as nested logit-based functions commonly represent choice-
specific utilities, i.e., the utility obtainable from a particular decision, given that choice.
However, solving for the utility-maximizing demands requires restating these indirect or
conditional utilities as direct or unconditional utility functions that encapsulate preferences
across all alternatives.  This involves a straightforward mathematical transformation that does
not impose any additional behavioral restrictions.  Given an indirect utility structure, we can
formulate a constrained optimization problem that maximizes indirect utility subject to a budget
constraint.  Then, finding the dual or mirror of the indirect utility maximization problem provides
the corresponding direct utility function (Varian 1992).

The optimization problems that generate the equilibrium aggregate travel demands
follow directly after deriving the aggregate-level direct utilities.  The objective function of the
optimization problems is a simple additive function of the direct utilities, i.e., including a travel
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demand component simply requires adding that direct utility component to the objective
function.  Similarly, it is simple matter to append the constraint set with the additional constraint
required for the travel demand component.  For example, given the direct utilities and
constraints in Appendix 14.5.1 ( 14-89)-( 14-101), solving for mode and UO-S route demands
only (i.e., TG and TD demands are given) involves the following optimization problem:

MIN  ( 14-91) + ( 14-92)
subject to:

( 14-96)
( 14-97)

and the non-negativity constraints:
( 14-98) - ( 14-101)

Solving for the complete travel demands (TG, TD, MS, NA) with UO-S/NA requires:

MIN  ( 14-89) + ( 14-90) + ( 14-91) + ( 14-92)
subject to:

( 14-94)
( 14-95)
( 14-96)
( 14-97)

and the non-negativity constraints:
( 14-98) - ( 14-101)

8.2.5.1.3 Data requirements and parameter estimation
Parameter estimation for the TC models occurs at either the individual or aggregate levels
through standard procedures for estimating nested logit models (see Ben-Akiva and Lerman
1985).  A difficulty occurs if the TC model includes a SUO NA component since choice utilities
are endogenous to the model (i.e., they are part of the model solution since travel costs are a
function of flow).  This difficulty is shared with most stochastic network equilibrium formulations
(Anas 1988).  Oppenheim (1995) provides some guidelines for dealing with this difficulty.
Also, as noted previously in this report, there have been some progress in estimating SUO NA
parameters during the solution phase (Huang 1995).  Continued research on this topic is
required.

A nested utility structure such as the one in the TC is often interpreted as a temporal
sequence, e.g., a MS/NA nesting could represent the decision sequence of first choosing a
mode then a route within that mode.  However,  an equivalent interpretation is the nesting
represents interrelationships among choices with no implication of a choice sequence.  For
example, a MS/NA nesting structure captures the shared modal attributes of route choices
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within a particular mode.  These interrelationships and their effect on nesting are reflected in the
estimated values of the logit parameters and consequent restrictions on those values ( 14-102), (
14-103).  In brief, there is an inverse relationship between the variance of an unobserved utility
and its corresponding logit parameter.  This implies a nesting structure where the variances
decrease as we move from the top level to the bottom.  In other words, the modeler must be
more certain about the observed utility specification at the lower-levels of the nesting structure
than the top levels.  Often, there is good reason to suspect a certain nesting structure (i.e.,
TG/TD/MS/NA nesting structure reflects a reasonable expectation about decreasing
randomness in the utility functions).  If the parameter estimation process indicates a violation of
these conditions, the nesting structure must be respecified to reflect the estimation results.
Fortunately, this is easily accomplished in Oppenheim=s (1995) model.

8.2.5.1.4 Solution procedures

The convex combinations and Evan’s partial linearization algorithms can solve models derived
within the TC framework.  Convex combinations can solve the UO-S-NA case with congestion
effects, while Evan’s partial linearization algorithm can solve all other models with congestion
effects.  Other solution procedures are available if congestion effects are not considered, but
these models are not discussed here since they are less relevant to urban travel demand analysis.
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9. DISCUSSION

9.1 Model Summary

Table 9-1 provides a summary of the network equilibrium-based travel demand models
reviewed in this report.  The Sheffi (1985), T2 (Dial 1995b), Dafermos (1980), Janson (1991)
and Fisk (1980) are strictly network assignment models (NA) predicting equilibrium flows on
a congested network.  Sheffi (1985) provides a static, deterministic equilibrium that assumes
perfect rationality among travelers, no temporal fluctuations and no modal or link interactions
(although the basic formulation can be extended to include this latter consideration).  Janson
(1991) extends this formulation to encompass temporal dynamics, albeit using discrete time
intervals.  T2 (Dial 1995b) relaxes the strict equilibrium implied in these models to encompass
varying tradeoffs among cost function components (in particular, VOTs) among travelers.
Dafermos (1980) provides a very general (albeit complex) NA model that accommodate
interactions among modes and link flows.

The remaining models are combined travel demand models.  They are “combined” in
the sense that they provide a combined or simultaneous equilibrium of the travel demand
components specified.  Three models are also fixed in the sense that the analyst solves for the
travel demand components stated in the model rather than specifying the travel demand
components of interest.  These are: i) the NA/TD model of Evans (1976); ii) the NA/MS/TD
model of Florian and Nguyen (1978); and, iii) the STEM NA/MS/TD/TG model (Safwat and
Magnanti 1988).   Admittedly, labeling these models as fixed (inflexible) may be harsh: these
models could conceivably be modified to account for different applications (e.g., the MS
component of STEM can be easily removed by specifying a single mode network).  However,
these modifications are ad hoc rather than inherent model features.

The combined travel demand models by Dafermos (1982), Sheffi and Daganzo (1980)
and Oppenheim (1995) allow more flexibility in tailoring the combined travel demand model to
fit the application.  The Dafermos (1982) model allows flexible specification of the MS, TD and
TG components: these functions need only satisfy very general qualitative conditions.  The
super- and hypernetwork approach allows specification of any or all of the travel demand
components: model specification occurs entirely by specifying the abstract network
corresponding to desired travel demand components.  Finally, the trip consumer approach of
Oppenheim (1995) offers flexibility at several levels.  Not only can the model accommodate any
or all travel demand components but also allows detailed specification of the individual-level
utility structure for travelers’ decisions.

As the above summary indicates, a fairly wide range of combined travel demand models
are available.  Choosing a particular model can depend on a variety of factors, not the least of
which are application-specific circumstances.  The next subsection of this report provides a
comparison among models to help guide this selection choice.
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Model NA MS TD TG

Sheffi (1985) Static
Deterministic
No modal/link interactions

T2 (Dial 1995b) Static
Deterministic
No modal/link interactions
Varying value of time

Dafermos (1980) Static
Deterministic
Modal/link interactions

Janson (1991) Discrete-time, dynamic
No modal/link interactions

Fisk (1980) Static
Stochastic (logit)
No modal/link interactions

Evans (1976) Static
Deterministic
No modal/link interactions

Doubly constrained
spatial interaction
model

Florian and
Nguyen (1978)

Static
Deterministic
No modal/link interactions

Two modes (one fixed
costs, other varying costs)
Binomial logit

Doubly constrained
spatial interaction
model

STEM (Safwat
and Magnanti
1988)

Static
Deterministic
No modal/link interactions

Simultaneous with route
choice

Logit Logit-based
accessibility
function

Dafermos (1982) Static
Deterministic
Modal/link interactions

General General General

Super- and
hyper-networks
(Sheffi and
Daganzo 1980)

Static
Deterministic
No modal/link interactions

Logit or probit Logit or probit Logit or probit

Trip consumer
approach
(Oppenheim
1995)

Static
Deterministic or stochastic
No modal/link interactions or
two-mode, symmetric
interactions

Nested logit Nested logit Nested logit

Table 9-1: Summary of equilibrium travel demand models

9.2 Model Comparison

This section compares the travel demand methods discussed previously in the report.  This
comparison provides guidance for model selection and use in forecasting and policy analysis.
Note that a definitive answer will not be forthcoming in this section.  Model selection depends
on the analysis requirements, data availability, computational resources, and so on, that vary
substantially among different analysts and organizations (and even among projects by the same
analyst within the same organization).  In addition, it is not necessary for an analyst to Abuy
into@ a single model since data requirements and computational procedures can be shared
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among the different models.  A GIS platform facilitates this integration and flexibility.  These
platform issues will be discussed subsequent to this section

Comparison of the travel demand models uses the following criteria (based partially on
Dial 1995a). The first criterion is basic theory.  This concerns the major strengths and
weaknesses of the model=s theoretical base, i.e., how well does it represent accepted travel
demand theory.  The second criterion is mathematical elegance.  This refers to the parsimony
and flexibility of the model=s formalism.  In this case, we are not concerned about the
Acorrectness@ of the model per se but rather its ability to adapt to different analysis needs in a
straightforward manner.   The third criterion is computational requirements and
performance. This includes the basic procedural needs of each model=s algorithm as well as
performance efficiency.  The final criterion is data requirements and parameter estimation.
This is also a very pragmatic concern: many practitioners may consider this to be the
fundamental, “make or break” criterion.  Table 9-2 provides a summary comparison based on
these criteria.   In this table, a “+” indicates a model strength and a “-“ indicates a model
weakness.
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Model Basic theory Mathematical elegance Computational
performance

Data and parameter
estimation

Sheffi (1985) UO-S (-)
Separable cost functions
(-)

Flexible link cost functions
(+)

Convex combinations
method (+)

Standard link cost
function (+)

T2 (Dial
1995b)

UO-G (+)
Separable cost functions
(-)
Explicit recognition of
varying cost tradeoffs (+)

Flexible link cost functions
(+)

T2-RSD algorithm
with parametric tree-
building algorithm (+)

No estimation theory
or procedures
specified (-)

Dafermos
(1980)

UO-G (+)
Non-separable cost
functions (+)

Flexible link cost functions
(+)

Current solution
method restricted to
small problems (-)

No estimation theory
or procedures
specified (-)

Janson (1991) DUO (-/+)
Separable cost functions
(-)

Inflexible link cost
functions (-)

DTA and CDA  (+) Standard link cost
function (+)

Fisk (1980) SUO (+)
Separable cost functions
(-)

Flexible link cost functions
(+)
UO-S can be derived as a
special case (+)

Chen and Alfa (1991)
modified MSA (+)

Difficult parameter
estimation (-)

Evans (1976) UO-S (-)
Separable cost functions
(-)
Separable demand
function  (-)

Inflexible TD function (-) Partial linearization
algorithm (+)

No estimation theory
or procedures
specified (-)

Florian and
Nguyen
(1978)

UO-S (-)
Separable demand
functions (-)

Flexible link cost functions
(+)
Inflexible MS and TD
functions (-)

Partial linearization-
related solution
algorithm (+)

Parameter estimation
based on average trip
length (+)

STEM (Safwat
and Magnanti
1988)

UO-S  (-)
Separable cost functions
(-)
Separable demand
functions (-)

Flexible link cost functions
(+)
Flexible TD and TG
functions (+)

Convex combinations
method (+)

No estimation theory
or procedures
specified (-)

Dafermos
(1982)

UO-G (+)
Non-separable cost
functions (+)
Non-separable demand
functions (+)

Flexible link cost functions
(+)
Flexible MS, TD and TG
components (+)

Current solution
method restricted to
small problems (-)

No estimation theory
or procedures
specified (-)

Super- and
hyper-
networks
(Sheffi and
Daganzo
1980)

UO-S for NA (-)
Separable cost functions
(-)
Separable demand
functions (-)

Flexible link cost functions
(+)
Flexible MS, TD and TG
functions (+)

MSA slow to
converge (-), although
Chen and Alfa (1991)
modification faster
with logit route choice
(+)

No estimation theory
or procedures
specified, although
standard random
utility theory
estimation procedures
are available (+)

Trip consumer
approach
(Oppenheim
1995)

UO-S (-)
Separable cost functions
(-)
Separable demand
functions (-)
Nested logit links

Flexible link cost functions
(+)
Flexible MS, TD and TG
functions (+)
Other models can be
derived as special cases (+)

Convex combinations
method (+)
Partial linearization
algorithm (+)

No estimation theory
or procedures
specified, although
nested logit foundation
may provide basis for
parameter estimation
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individual and aggregate
travel demand (+)

(+)

Table 9-2: Comparison of equilibrium travel demand models.

9.2.1 Basic theory
Equilibrium travel demand models offer tradeoffs between theoretical soundness and
computational tractability.  To achieve computational tractability, most models rely on
foundations such as UO-S network equilibrium and separable link cost functions.  These require
the analyst to accept behavioral assumptions such as perfect information and decision making in
route choice, no modal or link flow interactions and a static equilibrium (Sheffi 1985; Evans
1976; Florian and Nguyen 1978; Safwat and Magnanti 1988; Sheffi and Daganzo 1980;
Oppenheim 1995).  Conversely, models with highly general and realistic equilibrium foundations
such as UO-G with non-separable link cost functions suffer from computational difficulties
(Dafermos 1980, 1982).  Between these extremes are models that selectively relax the strict
UO-S and separability requirements.  These include allowing varying tradeoffs among cost
components in route choice (Dial 1995b), extending UO-S to encompass temporal dynamics
(Janson 1991) and allowing for imperfect decision-making and information (Fisk 1980).

Similarly, non-separable demand functions are more realistic than separable demand
functions but impose computational difficulties (Dafermos 1982).  Separable demand functions
allow greater tractability but assume that mode and trip destination choice are based on travel
costs independent of other destinations and modal costs.  Travel demand models implement
separable demand functions with varying degrees of theoretical adequacy.  Several models use
an individual-level logit-based random utility formulation or an equivalent, aggregate-level spatial
interaction formulation for the MS, TD or TG components (Evans 1976; Florian and Nguyen
1978; Safwat and Magnanti 1988).  The IIA properties inherent in these formulations cannot
account for interdependencies among unobserved choice-dependent components; this is
particularly problematic with MS since travel modes have substantial interrelationships.  IIA
properties can also be problematic with respect to destination choice since these ignore spatial
structural effects, i.e., hierarchical decision-making related to perceived spatial clustering of
destinations.

Two models provide a selective relaxation of the strict separable, logit or spatial
interaction foundation for the higher-level travel demand components.  The super- and
hypernetwork approach can accommodate both logit-based or probit-based choice
mechanisms for the higher-level travel demands.  However, a probit-based choice mechanism
involves some computational difficulties related to the need to numerically (as opposed to
analytically) evaluate choice probabilities and slow convergence of the MSA algorithm (see the
“Computational Performance” section below).  The trip consumer approach (Oppenheim 1995)
uses a nested logit approach to capture choice interdependencies without sacrificing tractability:
nested logit choice probabilities can be evaluated analytically and efficient solution algorithms
(convex combinations, the partial linearization algorithm) can solve the resulting combined
model.  However, neither approach captures the spatial structural effects in destination choice.
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In summary, the network-equilibrium-based travel demand models offer tradeoffs
between theoretical consistency and tractability.  Generally, some theoretical correctness must
be sacrificed in order to achieve computational tractability, particularly for urban-scale travel
demand analyses.  Note that these theoretical restrictions are shared by the traditional
four-step approach. Continued research is required to reconcile the more general and
theoretically-consistent approaches such as Dafermos (1980, 1982) with more efficient,
tractable solution procedures.  However, at present there are models that offer selective
relaxation of the strict behavioral assumptions without sacrificing tractability, in particular the T2
(Dial 1995b) and DUO (Janson 1991) NA models and the trip consumer approach
(Oppenheim 1995) for combined NA/MS/TD/TG.               

9.2.2 Mathematical elegance
Travel demand analyses are often used in “what-if?” scenario evaluation and in projecting future
travel demands.  Both applications benefit from the ability to incorporate infrastrucure and
policy variables, e.g., the analyst can manipulate these variables to assess the impact of
proposed infrastucture and policy changes on travel demand patterns.  This requires model
flexibility with respect to link cost and travel demand functions: these functions should be able to
incorporate a wide range of infrastructure and policy-related variables to be useful in planning
and policy analysis.

Generally, the travel demand models reviewed are very flexible with respect to model
specification.  Link cost functions and higher-level travel demand utilities can be specified with
arbitrary length and complexity as long as they obey very general qualitative restrictions (e.g.,
separability, non-negativity, increasing with flow).  Of the travel demand models reviewed, only
three are inflexible with respect to link cost or travel demand function specification.  Janson’s
(1991) DUO model can only accommodate travel time in its link cost functions since cumulative
route costs (travel times) are required in the model constraints.  Evans (1976) and Florian and
Nguyen (1978) models use a doubly constrained spatial interaction model for the TD
component; this only allows travel costs to affect destination choice.  In both cases the origin
outflows and destination inflows are constrained to known totals, so this is not a severe
restriction if the analyst has a current or projected O-D matrix.

The Florian and Nguyen (1978) model also has severe restrictions on the MS function
specification: this component is restricted to two modes of which only one has flow-dependent
travel costs.  Another source of inflexibility in this model is the use of a single parameter to
control mode and destination choice dispersion.  This limits model fit to empirical modal split
and destination choice patterns.

The trip consumer approach (Oppenheim 1995) has particular strengths with respect to
mathematical elegance and flexibility.  First, the same modeling framework can easily capture
any or all of the travel demand components in an elegant and consistent manner: all travel
demand utilities are stated in a theoretically-consistent manner through the nested utility
structure.  In addition, the TC approach can accommodate measured utilities of arbitrary length
and form: this could allow any number of relevant policy variables to be encompassed.  The TC
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approach also allows the calculation of rigorous economic measures such as the consumer=s
surplus (see Varian 1992) deriving from a given transportation policy.  Finally, several of the
other models (e.g., Sheffi 1985; Evans 1976; Safwat and Magnanti 1987) can be derived as
special cases.

9.2.3 Computational performance
The computational effort required to solve each model is a very practical consideration,
particularly for urban-scale applications.  In general, the travel demand models reviewed in this
report are computationally tractable for urban-scale travel demand analyses.  This is not
surprising since this was the major selection criterion for inclusion in this review.  The only
models that are not (currently) feasible for urban-scale analyses are the Dafermos (1980, 1982)
formulations.  Nevertheless, this review included these models due to their theoretic appeal and
mathematical elegance.  Continued research is required to determine more tractable solution
algorithms for this general and flexible approach.

An interesting property of the solution algorithms for most of the models reviewed in the
report is they are structurally equivalent at a deep level.  The convex combinations, Evans partial
linearization and MSA algorithms all share the following basic steps: i) direction-finding - given
a current feasible solution, find an optimal direction (within the mathematical solution space) that
improves the objective function; ii) step-size - given the improvement direction, how far should
we move?; and, iii) convergence test - should we stop and accept the current solution based
on the degree of change since the last solution or solutions?  Even further, the direction-finding
steps among the algorithms all share the same major computational requirement, that is, solving
the set of shortest paths from each origin to all destinations based on the current flow costs.
Beyond this basic computational step, the algorithms differ with respect to how flows are
distributed among destinations based on these shortest paths.

In terms of complexity, most algorithms are dominated by the need to solve the shortest
path trees from each origin during the direction-finding step of each iteration.  Therefore, relative
efficiency reduces to the question of how fast the algorithm converges.  In this respect,
algorithms whose direction-finding step are based on partial linearization (e.g., Evans partial
linearization, Florin and Nguyen’s modified Hitchcock algorithm, the LDT STEM algorithm)
rather than full linearization (convex combinations) will converge faster due to wider adjustment
of the O-D travel demands during each step.  However, this relative advantage only exists with
O-D matrices that have few non-zero elements (Boyce, LeBlanc and Chon 1988).  Algorithms
with step-size optimization (all of the above algorithms plus the Chen and Alfa (1991) modified
MSA) will converge faster than algorithms with fixed step-sizes (MSA).

Three algorithms require an additional complexity dimension beyond calculating shortest
path trees from each origin during each iteration.  Dial’s (1995b) T2-RSD algorithm for solving
the T2 NA model requires solving, from each origin and within each iteration, a shortest path
tree for each slope interval along the efficient frontier.  However, a parametric tree-building
algorithm that modifies the tree from the previous interval rather than rebuilding from scratch
provides substantial computational savings.  Janson’s (1991b) DTA procedure requires solving
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a user-designated number of shortest path trees from each origin during each iteration.  This
number determines an incremental assignment of flows from each origin during each iteration.  In
addition, each iteration corresponds to a (small) time interval over the study period; this number
can be large.  CDA requires similar calculations.  Therefore, although DTA and CDA are not
intractable for urban-scale analyses, their run-times can be long.  However, this weakness will
become less problematical as the power of desktop computational platforms continues to
increase at a geometric rate.

9.2.4 Data and parameter estimation
The data requirements for the equilibrium travel demand model are reasonable.  As noted in the
introduction to this report, in general these models require no additional data beyond the data
required for the four-step approach.  The only exception to this observation are the Dafermos
(1980, 1982) models; these require estimation of mode/link interactions and travel disutility
interaction matrices.

A weakness of many of the travel demand models reviewed in this report is the lack of
a consistent parameter estimation theory and procedure.  Since these models provide a
consistent equilibrium among the travel demand components, the parameters associated with the
travel demand components should be estimated in a simultaneous (as opposed to an ad-hoc,
sequential) manner.  However, none of the models offer a statistical theory for the combined
distribution of the parameters; this is required for developing an efficient simultaneous estimation
procedure.  A major reason for the lack of this theory is that most of these models come from
scientists with a operations research/engineering background rather than an
econometric/statistical background.  A window of opportunity exists for researchers with the
proper statistical background to contribute greatly to this field.

Some of the models reviewed offer informal guidelines with respect to parameter
estimation.  Techniques are available for estimating the link cost function parameters in several
NA models (e.g, Fisk 1991).  Florian and Nguyen (1978) provide some suggestions for
estimating their combined NA/MS/TD model, although the tractable estimation procedure
requires a single parameter shared among the MS and TD components.  Sheffi and Daganzo’s
(1980) super- and hypernetwork approach can use standard logit and probit estimation
procedures, although still required are methodologies for simultaneous estimation among these
components.  The trip consumer approach (Oppenheim 1995) offers considerable promise for
simultaneous parameter estimation since a unified and consistent utility structure (the nested logit
structure) underlies the model.  Oppenheim (1995) provides detailed discussion of parameter
estimation issues but does not offer a consistent and efficient estimation procedure per se; a
window of opportunity exists in this regard.

9.3 Continued Research and Development Issues

Although this report’s objective is an accessible review of equilibrium travel demand models
rather than the research frontiers, this review nevertheless suggests two major research and
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development issues.  These concern requirements for wider application of equilibrium travel
demand models.

9.3.1 Research and development issue 1: Specification and development of a
computational toolkit for equilibrium travel demand modeling.
The increasing use of geographic information systems for transportation (GIS-T) provides an
excellent platform for developing equilibrium travel demand modeling software.  A major benefit
of GIS-T is database management and decision support.  In the former case, GIS provides an
efficient platform for building and maintaining the transportation database.  Although travel
demand data requirements includes a full range of spatial, aspatial and network data, the
common unifying characteristic is location-based referencing (Shaw 1993).  A GIS can not only
maintain the primary data using location references but can also calculate critical spatial and
topological properties required in the travel demand model (e.g., joins between origin and
destination centroids and the transportation network).  In the latter case, a GIS provides query-
support as well as mapping of model results within the geographic context of the study area and
with other ancillary but supporting cartographic information.  This benefits analyses and policy
decision processes (Armstrong et al. 1992).

While database management and decision support are the core benefits of GIS-T,
another benefit of a GIS is support for modelbase management.  The user interface of a GIS
facilitates the treatment of models and model components as encapsulated objects which hide
procedural details from the user.  Instead, users manipulate these entities based on their
attributes, behavior and relationships with other entities.  This allows users to concentrate on
concepts and substantive issues (e.g., data requirements, solution properties) instead of
implementation details (Khoshafian and Abnous 1995).  Note that these benefits can be realized
from any computational platform that supports user interfaces (and especially graphical user
interfaces or GUIs); however, these capabilities enhance the core role of GIS as a database
management and decision support technique for transportation modeling.

Using a modelbase management approach to developing equilibrium travel demand
modeling software offers a second major benefit, that is, the ability to integrate different travel
demand models based on shared computational requirements and model components.  The
detailed review of the equilibrium travel demand models in Section 8 and the discussion of the
computational performance issue previously in this section clearly illustrates the common
structure and components shared among the models.  Note that several of the UO-S models
are derived from the basic UO-S NA model simply by adding additional components to the
objective function and corresponding constraints to the constraint set.  In addition, the solution
procedures share the same fundamental structure of “direction-finding, move-size, convergence
test.”   Similarly, the UO-G models share the same fundamental variational inequality (VI)
structure.  In turn, a VI formulation can generalize the convex combinations method used in
several models (Magnanti and Perakis 1993).  Finally, the Fisk (1980) SUO NA model shares
a similar structure to UO-S NA and can collapse to this latter model under certain parameter
settings.
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Identifying the fundamental objects in the equilibrium travel demand models can allow
the specification of a computational toolkit to support several of the equilibrium travel
demand models within the same computational platform.  Since many key computational objects
are shared, implementing multiple travel demand models within the same platform can be
accomplished efficiently.  Then, instead of forcing a travel demand analysis into the model
available in a given GIS software, the practitioner can access the model or models most
appropriate for the research question at hand.  This could greatly improve the flexibility and
relevance of equilibrium travel demand modeling.

Miller and Storm (1996) identified an effective generic GIS design to support
equilibrium travel demand modeling.  This design partitions the system’s components among
GIS and non-GIS platforms according to the components’ functional requirements.  The GIS
serves as a spatial database manager and GUI to the modeling system.  This includes a network
database design that maximizes the likelihood of database integrity after updates.  The design
exploits the ability of a GIS to maintain route data structures with a one-to-many relationship
with the underlying topological network.  The GIS also provides a “scenario editor” and “result
analyzer” that exploits its user interface, cartographic visualization and spatial query capabilities.
The travel demand solution algorithm resides outside the GIS; this provides substantial
computational savings since the computational overhead required to access data with user-built
functions within a GIS can be high.  Since equilibrium travel demand models use shortest path
calculations and flow updating as their primary solution mechanisms, the GIS can transfer the
information into a network data structure than can be supported and accessed independently.
After achieving an equilibrium solution, the GIS can access this network-based data for
visualization and query capabilities.

The heterogeneous design strategy discussed by Miller and Storm (1996) indicates the
desirability of component sharing and interoperability among the objects in the computational
toolkit.  This would allow the travel demand models to be supported and interfaced across a
variety of computational platforms and software.  This requires the computational tookit
components to have the following features (Khoshafian and Abnous 1995): i) binary
representation or the ability of components to be written in different languages but have
standard interfaces to support interoperability among objects; ii) standard user interfaces or a
common, recognized way in which users interface with the object; iii) standard storage
representation or a common method for storing components in a nested or hierarchical
manner; and, iv) distributed computing support or standards for the interaction of components
in a distributed architecture.  These standards will allow interoperability among the travel
demand toolkit components, computational platforms, GIS software and other, supporting
software.

A crucial first step in developing an equilibrium travel demand modeling toolkit is a
structured analysis of the model components in terms of their signatures (inputs and outputs)
and behaviors.  As the preceding discussion should suggest, an appropriate technique is
object-oriented analysis and design (Booch 1994; Rumbaugh et al. 1991). This is a
graphics-oriented formal modeling technique that specifies what a system is (analysis) and how
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it should be designed.  Most importantly, this type of structured analysis technique embodies
several of the critical features necessary for a robust and effective computational toolkit,
including encapsulation of procedures for binary representation, identifying standard interfaces
through abstract data types and standard storage representing using inheritance and aggregation.
An object-oriented analysis and design will allow specification of standards for the equilibrium
travel demand toolkit components; this will allow GIS or other software vendors to develop
interoperable and reusable components at the onset rather than having to re-engineer these at a
later date.

9.3.2 Research and development issue 2: Development of a model testbed
Closely related to research and development issue 1 is the specification and development of a
platform for extensive empirical testing of the equilibrium travel demand models.  As noted
previously, equilibrium travel demand models have only been subjected to limited testing
(although these initial results are encouraging, at least with respect to the four-step approach).
Continued and extensive testing and evaluation of the equilibrium travel demand models, as well
as other competing approaches, is warranted.

The basic idea is to develop a model testbed that will support empirical evaluation of a
variety of travel demand models.  The “testbed” should be a robust and flexible computational
platform that will support goodness-of-fit comparisons among different travel demand models.
This should include modules that support the travel demand models, simulation of travel demand
scenarios, graphics for summarizing model fit and a software development environment for
generating required software components (see Summers and Southworth 1998).  This testbed
should not be restricted to equilibrium travel demand models; other approaches such as
microsimulation-based models should be supported and tested within the system.

Development of a travel demand modeling testbed will be imperative given the
continued development and deployment of intelligent transportation systems (ITS).  While
theory can not be ignored, identifying ITS-appropriate models cannot be identified only from
first principles.  The close coupling of transportation systems with ITS dictates the need for
model validity relative to the type of control imposed by the ITS in addition to the traditional
validity relative to an empirical dataset.  Since varied ITS environments will dictate diverse
modeling approaches, the testbed should support the economical development and testing of
travel demand models relative to planned ITS deployments (Summers and Southworth 1998).
The continuing development of dynamic equilibrium travel demand models can support ITS,
although extensive testing of these and other approaches is required.

9.3.3 Research and development issue 3: Development of a combined statistical
distribution theory and simultaneous parameter estimation procedures.
As mentioned previously in this section, a weakness of equilibrium travel demand models is a
lack of statistical distribution theory for the combined travel demand components within each
equilibrium model.  Note that this weakness is shared with the 4-step approach: a consistent
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combined statistical distribution theory does not exist for the sequential travel demand estimation
procedure.  However, this weakness is not as apparent in the 4-step approach since it artificially
separates the travel demand modeling components.  When these components are embedded in
an equilibrium framework, this weakness becomes more obvious.

Some discussion of these combined estimation issues does exist in the literature (e.g.,
Anas 1988; Florien and Nguyen 1978; Oppenheim 1995).  However, no existing model has a
combined statistical distribution theory and an efficient and unbiased simultaneous estimation
procedure for all parameters.  A possible theoretical foundation for this theory and procedure
may be derived using the entropy-maximizing framework of Wilson (1967, 1974).  This
framework demonstrates that spatial interaction models provide the most likely trip distribution
given known aggregate information about the system (e.g., origins outflows, destination inflows,
travel costs, total trips).  This theory supports a highly general information-minimizing approach
to spatial interaction parameter estimation (see Fotheringham and O’Kelly 1989).  The difficulty
in combined travel demand parameter estimation is that travel costs, a key component of the
system, are endogenous to the model (see Anas 1988 for a related discussion).

Oppenheim’s (1995) trip consumer (TC) model provides possibly the best model
support for parameter estimation.  The TC model is consistent with a combined, nested logit
utility structure at the individual level.  The nested logit structure can support effective
simultaneous parameter estimation.  Oppenheim (1995, Chp. 7) provide a lucid discussion of
the parameter estimation issues, particularly with respect to maximum likelihood estimation
procedures.  Continued research along this lines, most likely using the TC model as a basis, is
required for effective application of equilibrium travel demand models.
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10. CONCLUSION

A potentially accessible modeling framework that resolves the major flaws of the 4-step
approach exists in the travel demand analysis literature.  Equilibrium travel demand models
generate consistent estimates of trip generation, trip distribution, modal split and network
assignment without major increases in computational nor data requirements relative to the four-
step approach.  In addition, recent research has improved the behavioral generality of these
models, linked aggregate travel demands to individual-level choice theory in a theoretically-
consistent manner and developed linkages to dynamic travel demand estimation.

This research report provides a guide to the theory and practice of equilibrium travel
demand modeling.  The orientation of this report towards an accessible review intends to
disseminate this information among a wide audience of current and emerging transportation
planners and analysts.  In addition, this report briefly identifies two major research and
development issues to support wider application of equilibrium travel demand models.

As Boyce, Zhang and Lupa (1994) argue, continued progress in improving travel
demand forecasts can only occur with increased understanding of the equilibrium approach.
Professionals must insist that vendors provide software that implement the equilibrium approach
and instructors must train the emerging generation of transportation planners and analysts in
these modeling principles.  This report supports this view by providing an initial step towards
wider application of the equilibrium approach.
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12. APPENDIX: SUMMARY OF  MAJOR NOTATION AND DEFINITIONS

This appendix summarizes the basic notation and network flow properties that characterize
network equilibrium-based travel demand models.  The notation follows (but expands on)
Fernandez and Friesz (1983).

12.1 Basic Notation

Network
[ ]G N A= , Directed graph representing transportation network,

where N is a finite set of network nodes and A is a
set of network arcs

( 12-1)

I Set of origins, I N⊆ ( 12-2)

J Set of destinations, J N⊆ ( 12-3)

a A network arc
( )a n n n n Nl m l m≡ ∈, ; ,

( 12-4)

r A network path

( ) ( ) ( ) ( ){ }r n n n n n n n ni k k l l m m j≡ , , , , ... , , , ,
( 12-5)

R Set of all paths in G ( 12-6)

Rij Set of all paths that connect O-D pair i,j ( 12-7)

K Set of modes ( 12-8)

δ ar
k Arc-path incidence variable; equal to one if arc a

belongs to path r and allows flows by mode k
( 12-9)

Arc flows and costs
fa

k Mode k flow on arc a ( 12-10)

fa Total flow on arc a ( 12-11)

F Set of all arc flows ( 12-12)
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ca
k Average travel cost for mode k user on arc a ( 12-13)

pa
k Random variable representing perceived travel cost

for mode k user on arc a
( 12-14)

Path flows and costs
hr

k Mode k flow on path r ( 12-15)

H Set of all path flows ( 12-16)

Cr
k Average travel cost for mode k user on path r;

C cr
k

ar
k

a
k

a A

=
∈
∑δ

( 12-17)

Cij
k
*

Minimum average travel cost for mode k user
between O-D pair ij

( 12-18)

C* Set of  minimum travel costs for all modes and O-D
pairs

( 12-19)

Pr
k Random variable representing the perceived travel

cost for mode k on path r
( 12-20)

Mr
k Marginal travel cost on path r for a mode k user;

M
C
hr

k r
k

r
k=

∂
∂

( 12-21)

Mij
k
*

Minimum marginal travel cost between O-D pair ij
for mode k user

( 12-22)

Aggregate travel demands
Dij

k Total mode k flow between O-D pair i,j ( 12-23)

( )d Dij
k

ij
k≡ −1 Travel disutility associated with mode k travel

between O-D pair i,j
( 12-24)

Dijr Total flow on path r between O-D pair i,j ( 12-25)

Di Total outflow from origin i ( 12-26)

Dj Total inflow to destination j ( 12-27)

Di0 Non-travelers in origin i ( 12-28)
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Bi Number of potential travelers in origin i ( 12-29)

12.2 Special case notation

Dynamic flow notation (Janson 1991b)

t Discrete time interval ( 12-30)

d Origin departure time interval ( 12-31)

∆t Length of each time interval ( 12-32)

T Total number of time intervals ( 12-33)

hr
d Flow on path r that departed during time interval d ( 12-34)

Cr
d Average travel cost on path r for travelers who departed

during time interval d
( 12-35)

Cij
d
*

Minimum average travel cost between O-D pair i,j for
travelers who departed during time interval d

( 12-36)

δ ra
d Temporal arc-path incidence variable; equal to one if trips

departing during time interval d and assigned path r use
arc a during time interval t, zero otherwise

( 12-37)

brn
d Travel time of path r from its origin to node n for travelers

departing in time interval d
( 12-38)

An Set of all arcs incident to node n ( 12-39)

T2 notation (Dial 1995a, 1995b, 1996)

( )d fa a
a deterministic disutility (d-disutility) associated with
flow on arc a

( 12-40)

( )s fa a
a stochastically-weighted disutility (s-disutility)
associated with flow on arc a

( 12-41)

ω a stochastic parameter (s-weight) capturing varying
reactions among travelers to ( )s fa a

( 12-42)
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( )g i jω , s-weight’s fixed and known probability density function
specific to O-D pair i,j

( 12-43)

( )fia ω Flow from origin i with s-weight T on arc a ( 12-44)

fia Total flow on arc a from origin i ( 12-45)

( ){ }a a n jk: ,= set of arcs whose to-nodes are destinations ( 12-46)

( ){ }a a j nk: ,= set of arcs whose from-nodes are destinations ( 12-47)

Super- and hyper-network notation (Sheffi and Dagnazo 1980)

N Set of basic nodes ( 12-48)

V Set of non-basic or “virtual” nodes, I J V, ⊆ ( 12-49)

A Set of basic arcs ( ){ }A n n l m Nl m≡ ∈, : , ( 12-50)

E Set of entrance/egress arcs

( ) ( ){ }E n n n n i V l N m N j Vi l m j i j= ∈ ∈ ′ ∈ ′′ ∈, ,..., , : , , ,
( 12-51)

′N i Set of basic nodes connected to origin i (i.e.,
“outbound” basic nodes connected to i)

( 12-52)

′′N j Set of basic nodes connected to destination j (i.e.,
“inbound” basic nodes connected to destination j)

( 12-53)

′N Set of all outbound basic nodes ( 12-54)

′′N Set of all inbound basic nodes ( 12-55)

12.3 Additional Definitions

12.3.1 Basic flow feasibility requirements

{ }H ≥ 0 ( 12-56)
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h D i j kr
k

ij
k

r Rij

= ∀
∈
∑ ( , , ) ( 12-57)

f h a ka
k

ar
k

r
k

r R

= ∀
∈
∑δ ( , ) ( 12-58)

12.3.2 Separable versus non-separable cost functions
Separable cost functions:

c c fa
k

a
k

a
k= ( ) ( 12-59)

Non-separable cost functions:

c c Fa
k

a
k= ( ) ( 12-60)

12.3.3 Separable versus non-separable demand functions

Separable demand functions:

D D Cij
k

ij
k

ij
k= ( )* ( 12-61)

Non-separable demand functions:

D D Cij
k

ij
k= ( )*

( 12-62)

12.3.4 Other conditions
Cost function non-negativity:

( )x c xa≥ ⇒ ≥0 0 ( 12-63)

Cost function increasing with respect to flow levels:

( )∂
∂
c x

x
a Aa > ∀ ∈0 ( 12-64)



84

13. APPENDIX: FORMAL PROPERTIES OF TRANSPORTATION EQUILIBRIA

13.1 Network Equilibria

13.1.1 User optimal (UO)

13.1.1.1 User optimal - strict conditions (UO-S)
A vector of path flows H is a UO-S flow if it is feasible and (Fernandez and Friesz 1983):

h C C i j k r Rr
k

r
k

ij
k

ij> ⇒ = ∀ ∈0 * ( , , , ) ( 13-1)

C C h i j k r Rr
k

ij
k

r
k

ij> ⇒ = ∀ ∈* ( , , , )0 ( 13-2)

13.1.1.2 User optimal - general conditions (UO-G)

A vector of path flows H  is a UO-G flow if (Smith 1979):

C H H H H( ) ( )⋅ − ≥ ∀ ∈0 Ω ( 13-3)

where Ω is the convex set of feasible path flows hr
k .

13.1.2 Dynamic user optimal (DUO)
A vector of (discrete time) path flows Hd, d = 1, … , T, is a dynamic user optimal flow if it is
feasible (see equations ( 14-54)- ( 14-57)) and (Janson 1991b):

h C C d T r R i I j Jr
d

r
d

ij
d

ij> ⇒ = ∀ ∈ ∈ ∈ ∈0 * ( , , , ) ( 13-4)

C C h d T r R i I j Jr
d

ij
d

r
d

ij≥ ⇒ = ∀ ∈ ∈ ∈ ∈* ( , , , )0 ( 13-5)

13.1.3 System optimal (SO)
A vector of path flows H is a SO flow if it is feasible and (Fernandez and Friesz 1983):
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h M M i j k r Rr
k

r
k

ij
k

ij> ⇒ = ∀ ∈0 * ( , , , ) ( 13-6)

M M h i j k r Rr
k

ij
k

r
k

ij> ⇒ = ∀ ∈* ( , , , )0 ( 13-7)

13.1.4 Stochastic user optimal (SUO)
A flow pattern H is a SUO if it is feasible and (Daganzo and Sheffi 1977; Sheffi 1985):

( )h D i j k r Rr
k

ij
k

r
k

ij= ∀ ∈π , , , ( 13-8)

where:

[ ]π r
k

r
k

s
k

ijP P r s R= ≤ ∀ ≠ ∈Pr C ( 13-9)

P cr
k

r
k

r
k= + ε ( 13-10)

[ ] [ ]E Eε r
k

r
k

r
kP c= ⇒ =0 ( 13-11)

where C is the vector of path travel costs.

13.2 Market Equilibrium

A flow pattern ( )H, *C  is a UO-S-based market equilibrium with combined TG, TD, MS and
NA if it satisfies the following system of non-linear equations (Aashtiani and Magnanti 1981;
Fernandez and Friesz 1983):

( ( ) ) ( , , , )*C H C h i j k r Rr
k

ij
k

r
k

ij− = ∀ ∈0 ( 13-12)

C H C i j k r Rr
k

ij
k

ij( ) ( , , , )*− ≥ ∀ ∈0 ( 13-13)

h D C i j kr
k

ij
k

r Rij

− = ∀
∈
∑ ( ) ( , , )* 0 ( 13-14)
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C H c H i j k r Rr
k

ar
k

a
k

ij
a L

( ) ( ) ( , , , )= ∀ ∈
∈
∑δ ( 13-15)

( , )H C* ≥ 0 ( 13-16)
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14. APPENDIX: MODEL FORMULATIONS

14.1 UO-S-based Approaches

14.1.1 NA (Sheffi 1985)
Assumptions:

i)  one mode (although multi-mode extensions are possible;

ii)  separable cost functions ( 12-59);

iii)  non-negative cost functions ( 12-63);

iv)  increasing cost functions ( 12-64);

v)  Dij  fixed and exogenous.

Optimization problem:

( )

{ }

MIN c x dx

f

a

f

a

a

a

0
∫∑ ( 14-1)

subject to:

f h a Aa ar r
r R

= ∀ ∈
∈
∑δ ( 14-2)

h D i I j Jr ij
r Rij

= ∀ ∈ ∈
∈
∑ ,

( 14-3)

h r Rr ≥ ∀ ∈0
( 14-4)

14.1.2 Combined TD/NA (Evans 1976)
Assumptions:

i)  one mode;

ii)  separable cost functions ( 12-59);

iii)  non-negative cost functions ( 12-63);

iv)  increasing cost functions ( 12-64);

v)  D Di j, fixed and exogenous;

vi)  separable demand functions ( 12-61) with the following format:
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( )D Cij ij ij∝ −exp *β ( 14-5)

Optimization problem:

( ) ( )

{ }
MIN D D D c x dx

D f

ij ij ij
ji

a

f

a

ij a

a1

0
β

ln

,

− +∑∑ ∫∑ ( 14-6)

subject to:

h D i I j Jr ij
r Rij

= ∀ ∈ ∈
∈
∑ , ( 14-7)

f h a Aa ar r
r R

= ∀ ∈
∈
∑δ ( 14-8)

D D j Jij j
i

= ∀ ∈∑ ( 14-9)

D D i Iij i
j

= ∀ ∈∑ ( 14-10)

h r Rr ≥ ∀ ∈0
( 14-11)

D i I j Jij ≥ ∀ ∈ ∈0 , ( 14-12)

 

14.1.3 Combined TD/MS/NA - Florian and Nguyen (1978)
Assumptions:

i)  two modes (“automobile” and “public transit”);

ii)  separable cost functions (automobile) ( 12-59);

iii)  non-negative cost functions (automobile) ( 12-63);

iv)  increasing cost functions (automobile) ( 12-64);

v)  ca
k2  (public transit) fixed and exogenous;

vi)  D Di j, fixed and exogenous;

vii)  separable demand functions ( 12-61) with the following format:

( )D C i I j J k k kij
k

ij
k∝ − ∀ ∈ ∈ =exp , , ,*β 1 2

( 14-13)
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viii) ( )
( ) ( )

D
D D

C

C C
i I j J k k kij

k

ij
k

ij
k

ij
k

ij
k

ij
k1 2 1 2 1 2+

=
+

∀ ∈ ∈ =
exp

exp exp
, , ,*

* *

β

β β

( 14-14)

where k1 indicates automobile mode and k2  indicates public transit.

Optimization problem:

( )

{ } ( )

MIN D D D D C

D D f c x dx

ij
k

ij
k

j

J

i

I

ij
k

ij
k

ij
k

j

J

i

I

ij
k

ij
k

a a

f

a A

a

β β1 1 2 2 2

1 2

11 11

0

ln ln

, ,

*+ +

+

== ==

∈

∑∑ ∑∑

∫∑

( 14-15)

subject to:

( )D D D i Iij
k

ij
k

i
j

J
1 2

1

+ = ∀ ∈
=

∑ ( 14-16)

( )D D D j Jij
k

ij
k

j
i

I
1 2

1

+ = ∈
=

∑ ( 14-17)

h D i I j Jr
k

ij
k

r Rij

1 1= ∀ ∈ ∈
∈
∑ , ( 14-18)

f h fa ar
k

r
k

a
k

r Rj

J

i

I

ij

= +
∈==
∑∑∑ δ 1 1 2

11

( 14-19)

D i I j J k Kij
k ≥ ∀ ∈ ∈ ∈0 , , ( 14-20)

h r R k Kr
k ≥ ∀ ∈ ∈0 , ( 14-21)

where fa
k2  is the public transit mode’s contribution to flow on arc a; this may be zero if the

public transit route is separate from the street network.

14.1.4 Combined TG/TD/MS/NA - STEM (Safwat and Magnanti 1988)
Assumptions:

i) [ ]′ = ′ ′ ′ = ′ =
= =

G N A N N A Ak

k

K
k

k

K
, , ,

1 1
U U

where Nk,Ak are the nodes and arcs of the network for
mode k;

( 14-22)

ii)  separable cost functions ( 12-59);

iii)  non-negative cost functions ( 12-63);
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iv)  increasing cost functions ( 12-64);

v)  separable demand functions ( 12-61) with the following format:

( )
( )

D D
C B

C Bij i
ij j

ik k
k I

=
− +

− +
∈

∑
exp

exp
*

*

θ

θ
( 14-23)

vi) D S E i Ii i i i= + ∀ ∈α ( 14-24)

where:

Si =
( )max , ln exp *0 − +







∈

∑ θC Eij j
j J

( 14-25)

accessibility variable that measures the expected utility of
travel from origin i (endogenous);

Ei = composite variable measuring the effect of non-transportation
factors on travel flow from origin i (exogenous);

( 14-26)

Bj = composite variable measuring the attractiveness of destination
j (exogenous);

( 14-27)

Optimization problem ( K ≡ 1  since modal attributes are captured by the subnetworks):

{ } ( ) ( )[ ]

( ) ( )

MIN
S D f

S S S E S E

D D B D D c x dx

i ij a i
i i i i i i i i i i

i

i
ij ij j ij ij

ji
a

f

a A

a

, ,
ln

ln

1

1

2

0

θ
α α α α

θ

+ − + + +

− − +

∑

∑∑ ∫∑
∈ ′

( 14-28)

subject to:

D S E i Iij
j J

i i i
∈
∑ = + ∀ ∈α ( 14-29)

h D i I j Jr ij
r Rij

= ∀ ∈ ∈
∈
∑ , ( 14-30)

f h a Aa ar r
r R

= ∀ ∈ ′
∈
∑δ ( 14-31)

S i Ii ≥ ∀ ∈0
( 14-32)

D i I j Jij ≥ ∀ ∈ ∈0 , ( 14-33)
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h r Rr ≥ ∀ ∈0
( 14-34)

14.2 UO-G-based approaches

14.2.1 T2 NA (Dial 1995b)
Assumptions:

i)  one mode;

ii)  separable cost functions ( 12-59) in the following format:

( ) ( )c d f s fa a a a a≡ + ω ( 14-35)

iii) Dij  fixed and exogenous

Optimization problem:

A flow pattern { }F fia
* *= is user optimal-T2 (UO-T2) if and only if it is feasible and a solution

to the following variational inequality problem:

( ) ( )( ) ( ) ( )( )d f s f f f da a a a
a Ai I

ia ia
* * *+ − ≥

∈∈
∑∑∫ ω ω ω ω

Ω

0 ( 14-36)

subject to:
( )

( ){ }
( )

( ){ }
( )f f D g i j j Jia

a a x j
ia

a a j x
ij

k k

ω ω ω
: , : ,

,
= =
∑ ∑− = ∀ ∈ ( 14-37)

14.2.2  NA/MS (Dafermos 1980)
Assumptions:

i)  one or more modes;

ii)  non-separable cost functions ( 12-60) in the following format:

( )c F Fa = ⋅ +G b ( 14-38)

 where:

G = a matrix capturing the interactions among links in
the network

( 14-39)

b = a vector containing static (e.g., base) costs for
each network arc.

( 14-40)
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iii)
Jacobian matrix of the cost functions, 

∂
∂

c
F

a
k







 , is

positive definite
( 14-41)

Optimization problem:

A flow pattern F  is UO-G if and only if it feasible (( 14-2) - ( 14-4)) and:

( )( )c F F F F− ≥ ∀ ∈0 κ ( 14-42 )

where c  is the vector of all arc costs and κ is the set of feasible arc flows.

14.2.3 Combined TG/TD/MS/NA (Dafermos 1982)
i)  one or more modes;

ii)  non-separable cost functions ( 12-60) in the format of ( 14-38);

iii)  Jacobian matrix of the cost functions, is positive definite ( 14-41);

iv)  non-separable demand functions ( 12-62) in the following format

( )d D Dij
k

ij
k

ij
k= ⋅ +M s ( 14-43)

where:
M = a matrix providing travel disutility interactions among

O-D flows.
( 14-44)

s = a vector containing static (e.g., base) disutilities
between O-D pairs.

( 14-45)

v)
Jacobian matrix of the inverse demand functions, 

∂
∂

d
D

ij
k

ij
k













, is

positive definite

( 14-46)

Given the assumptions above, an (arc) flow and travel demand pattern ( , )F D  is a
market equilibrium with combined TG/TD/MS/NA if it satisfies the following variational
inequality problem (Dafermos 1982):
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c d( )( ) ( )( ) ,F F F D D D F D− − − ≥ ∀ ∈0 Γ ( 14-47)

where d is the vector of all travel disutilities ( 12-24) and Γ  is the set of feasible flow patterns
and travel demands.

The VI problem ( 14-47) is a generalization of the following individual-level, UO-S-
based market equilibrium conditions:

d D C F
if h
if h

k w r Rij
k

ij
k

r
k r

k

r
k w( ) ( )

,
,

( , , )−
= >
≤ =





∀ ∈
0 0
0 0

( 14-48)

If ( , )F D is a demand pattern that satisfies ( 14-48) then the following will be true:

C F h h d D h h i j k r Rr
k

r
k

r
k

ij
k

r
k

r
k

ij( )( ) ( )( ) ( , , , )− − − ≥ ∀ ∈0 ( 14-49)

where hr
k  is the route flow implied by F . Expressing the first half of ( 14-49) in terms of arc

flows only and the second half in travel demands only and then summing across user classes and
routes leads directly to ( 14-47). The aggregate level statement relaxes the strict UO-S
assumptions and allows individual variations in behavior within the aggregate constraints.

14.3 DUO-based approaches

14.3.1 DUO NA (Janson 1991b)
Assumptions:

i)  single mode;

ii)  separable cost functions ( 12-61);

iii)  non-negative cost functions ( 12-63);

iv)  increasing cost functions ( 12-64);

v)  Dij  fixed and exogenous

vi)  study time period divided into discrete time intervals t T= 1,.. .,

Model structure:

( )

{ }
MIN c x dx

f

a
t

f

t Ta A

a
t

a
t

0
∫∑∑

∈∈

( 14-50)

subject to:

(static constraints)
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f h a A t Ta
t

r
d

t Tr R
ra
d t

d

= ∀ ∈ ∈
∈∈
∑∑ δ , ( 14-51)

D h i I j J d Tij
d

r
d

r Rij

= ∀ ∈ ∈ ∈
∈
∑ , , ( 14-52)

h r R d Tp
d ≥ ∀ ∈ ∈0 , ( 14-53)

(dynamic contraints)

δ ra
d t

t T
pr R a A t T d T

∈
∑ = ∀ ∈ ∈ ∈ ∈1 , , , ( 14-54)

( )b c f r R n N t Trn
t

a
t

a
t

ra
d t

a At T rn

= ∀ ∈ ∈ ∈
∈∈
∑∑ δ , , ( 14-55)

[ ]b t t r R n N d T t T a Arn
t

ra
d t

n− ≤ ∀ ∈ ∈ ∈ ∈ ∈∆ δ 0 , , , , ( 14-56)

[ ]b t t r R n N d T t T a Arn
t

ra
d t

n− − ≥ ∀ ∈ ∈ ∈ ∈ ∈( ) , , , ,1 0∆ δ ( 14-57)

14.4 SUO-based Approaches

14.4.1 SUE NA (Fisk 1980)
Assumptions:

i)  one mode;

ii)  separable cost functions ( 12-59);

iii)  non-negative cost functions ( 12-63);

iv)  increasing cost functions ( 12-64);

v)  Dij  fixed and exogenous;

vi)  route costs are random variables consisting of an observable or structural
component and an unobservable or stochastic component whose expected value is
zero ( 13-10), ( 13-11).

Optimization problem:

( )

{ }

MIN h h c x dx

h f

r r a

f

a Ar Rj Ji I

r a

a

ij

1

0θ
ln

,

+ ∫∑∑∑∑
∈∈∈∈

( 14-58)
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subject to:

D D i jijr ij
r Rij

= ∀
∈
∑ , ( 14-59)

δ ar
r Rj Ji I

r a
ij

h f a A
∈∈∈
∑∑∑ = ∀ ∈ ( 14-60)

h r R i I j Jr ij≥ ∀ ∈ ∀ ∈ ∀ ∈0 ( 14-61)

14.4.2 Super- and hyper-networks (Sheffi and Daganzo 1980)
Assumptions:

i) [ ]G N A= , ( 14-62)

ii) N N V= ∪ ( 14-63)

iii) A A E= ∪ ( 14-64)

iv)  ca  fixed and exogenous ∀ ∈a E ;

v)  separable cost functions( 12-59) ∀ ∈a A ;

vi)  non-negative cost functions ( 12-63) ∀ ∈a A ;

vii)  increasing cost function ( 12-64) ∀ ∈a A ;

Hypernetwork equilibrium conditions:

′′ = ∀ ∈ ′ ∈ ′′
∈∈
∑∑D D l N m Nlm ij lm

ij

j Ji I

π , ( 14-65)

h D l N m N i I j Jr lm
r Rlm

= ′′ ∀ ∈ ′ ∈ ′′ ∈ ∈
∈
∑ , , , ( 14-66)

C C r R l N m Nr lm lm− ≥ ∀ ∈ ∀ ∈ ′ ∈ ′′* , ,0 ( 14-67)

( )C C h r R l N m Nr lm r lm− = ∀ ∈ ∈ ′ ∈ ′′* , ,0 ( 14-68)

h r Rr ≥ ∀ ∈0
( 14-69)

where:
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π lm
ij = [ ]Pr ,ob P P n N o Nlm

ij
no

ij
i j≤ ∀ ∈ ′ ∈ ′′ ( 14-70)

Plm
ij = P C Pl

ij
lm m

ij+ +* ( 14-71)

Pl
ij = stochastic cost on entrance arc ( , )n n Ei l ∈ ( 14-72)

Pm
ij stochastic cost on egress arc ( )n n Em j, ∈ ( 14-73)

Clm* = minimum path cost between basic network
entrance/egress pair l,m

( 14-74)

14.5 Combined UO-S/SUO Approaches

14.5.1 Combined TG/TD/MS/NA - Trip Consumer Approach (Oppenheim 1995)
Assumptions:

i)  one or more modes;

ii)  non-negative cost functions ( 12-63);

ii)  increasing cost functions ( 12-64);

iv)  separable cost functions ( 12-59) (although Oppenheim (1995) discusses a two-
mode non-separable cost function version of the model).

Consumer utility maximization problem (Varian 1992):

( )
{ }

MAX U y
y

( 14-75)

subject to:
p y = b

( 14-76)

y Y∈
( 14-77)

where U(y) is the utility of choice y, y is an attribute vector, p is a vector of prices associated
with each attribute, b is a budget constraint and Y is the feasible solution space.
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Indirect and expected utilities:

TG Indirect
utility:

i|l t i|l+1U  =   (V
i
 +  W )~ ~β ( 14-78)

Expected
utility ( )( )[ ]i|l i i|l+1W  =  

1

t
 1 +  t V  +  W~ ln exp ~

β
β ( 14-79)

TD Indirect
utility

ij|l ij ij|l+1U  =  d  (V  +  W )~ ~β ( 14-80)

Expected
utility ij|l

d j
dW  =  

1
  V

ij
 +  W ij|l+1

~ ln exp ~
β

β∑




















 ( 14-81)

MS Indirect
utility

ijm| l ijmU  =  m  (V  +  W )
ijm|l+1

~ ~β
( 14-82)

Expected
utility ( )( )i ijm ijm|l+1jm|lW  =  

1

m
 

m
 m V  +  W~ ln exp ~

β
β∑







( 14-83)

NA (UO-S) Indirect
utility

ijmr ijmr ijmrg  =  -  t  -  cτ ( 14-84)

Expected
utility

ijmr
*

{k} ijmkg  =   gMIN ( 14-85)

NA (SUO) Indirect
utility

ijmr|l ijmrU  =  r  g~ β ( 14-86)

Expected
utility ( )ijmr|l jmrW  =  

1

r
  

r r ig~ ln exp
β

β∑





( 14-87)

Gormon-form utility structure (Varian 1992):

( ) ( ) ( )U b f b gn np z p z pn n, , ,= + ( 14-88)

where:
p = vector of observed prices or costs;
zn = vector of observed attributes for individual n;
bn = budget of individual n.
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Direct utilities (objective function components):

TG: ( )1
0 0β t

l i i i i i i
i Ii I

D D D D U Dln ln+ −
∈∈
∑∑ ( 14-89)

TD: 1
β d

l ij ij ij ij
j Ji Ij Ji I

D D U Dln −
∈∈∈∈

∑∑∑∑ ( 14-90)

MS: 1
β k

l ij
k

ij
k

k Kj Ji I
ij
k

ij
k

k Kj Ji I

D D U Dln
∈∈∈ ∈∈∈
∑∑∑ ∑∑∑− ( 14-91)

NA-D
( )τ c x dxa

k
f

a Ak K

a
k

0
∫∑∑

∈∈

( 14-92)

NA-S

( )1

0β
τ
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Travel demand constraints:

TGC: D D B i Ii i i+ = ∀ ∈0 ( 14-94)

TDC: D D i Iij i
j J

= ∀ ∈
∈
∑ ( 14-95)

MSC:
D Dij

k
ij

k K

=
∈
∑ ( 14-96)

NAC: h D i I j J k Kr
k

r R
ij
k

ij∈
∑ = ∀ ∈ ∈ ∈, , ( 14-97)

Non-negativity constraints:

D i Ii 0 0≥ ∀ ∈ ( 14-98)

D i I j Jij ≥ ∀ ∈ ∈0 , ( 14-99)

D i I j J k Kij
k ≥ ∀ ∈ ∈ ∈0 , , ( 14-100)

h r R k Kr
k ≥ ∀ ∈ ∈0 , ( 14-101)
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Parameter restrictions:

β
β β

β β
β

κ
λ

κ
λ

κ

k
l

k
l

k
l

l L

L
= −

=

=







+

+

1

1 1

1

, ,...,

,

( 14-102)

Equation ( 14-102) implies:

β βk k
L1 ≤ ≤... ( 14-103)


